Skip to main content

Sensing the Ultrastructure of Bacterial Surfaces and Their Molecular Binding Forces Using AFM

  • Protocol
  • First Online:
Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

In this protocol, we provide a detailed step-by-step bacterial surface imaging and molecular analysis procedure. With SPM (scanning probe microscopy)-based dynamic force microscopy (DFM) imaging, we achieved a so far unprecedented resolution of ~1 nm on the outer surface layer of Tannerella forsythia and monitored the production of curli fibers on Escherichia coli in physiological conditions. Moreover, using these immobilization methods, single-molecule force spectroscopy experiments were conducted on living bacterial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engel A, Muller DJ (2000) Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 7(9):715–718. https://doi.org/10.1038/78929

    Article  PubMed  CAS  Google Scholar 

  2. Martinez-Martin D, Herruzo ET, Dietz C, Gomez-Herrero J, Garcia R (2011) Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys Rev Lett 106(19):198101

    Article  CAS  PubMed  Google Scholar 

  3. Rico F, Su C, Scheuring S (2011) Mechanical mapping of single membrane proteins at submolecular resolution. Nano Lett 11(9):3983–3986. https://doi.org/10.1021/nl202351t

    Article  PubMed  CAS  Google Scholar 

  4. Arnoldi M, Fritz M, Bauerlein E, Radmacher M, Sackmann E, Boulbitch A (2000) Bacterial turgor pressure can be measured by atomic force microscopy. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62(1 Pt B):1034–1044

    PubMed  CAS  Google Scholar 

  5. Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI (2007) Atomic force microscopy probing of cell elasticity. Micron 38(8):824–833. https://doi.org/10.1016/j.micron.2007.06.011

    Article  PubMed  CAS  Google Scholar 

  6. Mortensen NP, Fowlkes JD, Sullivan CJ, Allison DP, Larsen NB, Molin S, Doktycz MJ (2009) Effects of colistin on surface ultrastructure and nanomechanics of Pseudomonas aeruginosa cells. Langmuir 25(6):3728–3733. https://doi.org/10.1021/la803898g

    Article  PubMed  CAS  Google Scholar 

  7. Touhami A, Nysten B, Dufrêne YF (2003) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19(11):4539–4543. https://doi.org/10.1021/la034136x

    Article  CAS  Google Scholar 

  8. Chtcheglova LA, Waschke J, Wildling L, Drenckhahn D, Hinterdorfer P (2007) Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys J 93(2):L11–L13. https://doi.org/10.1529/biophysj.107.109751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science (New York, NY) 264(5157):415–417

    Article  CAS  Google Scholar 

  10. Lee GU, Chrisey LA, Colton RJ (1994) Direct measurement of the forces between complementary strands of DNA. Science (New York, NY) 266(5186):771–773

    Article  CAS  Google Scholar 

  11. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci 93(8):3477–3481

    Article  CAS  PubMed  Google Scholar 

  12. Benoit M, Gabriel D, Gerisch G, Gaub HE (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2(6):313–317. https://doi.org/10.1038/35014000

    Article  PubMed  CAS  Google Scholar 

  13. Oh Yoo J, Cui Y, Kim H, Li Y, Hinterdorfer P, Park S (2012) Characterization of Curli a production on living bacterial surfaces by scanning probe microscopy. Biophys J 103(8):1666–1671. https://doi.org/10.1016/j.bpj.2012.09.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Oh YJ, Hubauer-Brenner M, Gruber HJ, Cui Y, Traxler L, Siligan C, Park S, Hinterdorfer P (2016) Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. Sci Rep 6:33909. https://doi.org/10.1038/srep33909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Oh YJ, Sekot G, Duman M, Chtcheglova L, Messner P, Peterlik H, Schäffer C, Hinterdorfer P (2013) Characterizing the S-layer structure and anti-S-layer antibody recognition on intact Tannerella forsythia cells by scanning probe microscopy and small angle X-ray scattering. J Mol Recognit 26(11):542–549. https://doi.org/10.1002/jmr.2298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ (2010) Atomic force microscopy of biological samples. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(6):618–634. https://doi.org/10.1002/wnan.104

    Article  PubMed  Google Scholar 

  17. Doktycz MJ, Sullivan CJ, Hoyt PR, Pelletier DA, Wu S, Allison DP (2003) AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy 97(1–4):209–216

    Article  CAS  PubMed  Google Scholar 

  18. Dufrêne YF (2002) Atomic force microscopy, a powerful tool in microbiology. J Bacteriol 184(19):5205–5213. https://doi.org/10.1128/jb.184.19.5205-5213.2002

    Article  PubMed  PubMed Central  Google Scholar 

  19. Baumgartner W, Hinterdorfer P, Schindler H (2000) Data analysis of interaction forces measured with the atomic force microscope. Ultramicroscopy 82(1):85–95

    Article  CAS  PubMed  Google Scholar 

  20. Zhu R, Gruber HJ, Hinterdorfer P (2018) Two ligand binding sites in Serotonin transporter revealed by nanopharmacological force sensing. Nanoscale imaging: Methods Mol Biol Vol.1814

    Google Scholar 

  21. Puntheeranurak T, Neundlinger I, Kinne RKH, Hinterdorfer P (2011) Single-molecule recognition force spectroscopy of transmembrane transporters on living cells. Nat Protocols 6(9):1443–1452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an APART (Austrian Programme for Advanced Research and Technology) fellowship of the Austrian Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hinterdorfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oh, Y.J., Hinterdorfer, P. (2018). Sensing the Ultrastructure of Bacterial Surfaces and Their Molecular Binding Forces Using AFM. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics