Skip to main content

Direct Observation of Dynamic Movement of DNA Molecules in DNA Origami Imaged Using High-Speed AFM

  • Protocol
  • First Online:
Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

The visualization of biomolecules is a straightforward way to elucidate the physical properties of molecules and their reaction processes. Atomic force microscopy (AFM) enables the direct imaging of biomolecules under physiological conditions at nanometer-scale spatial resolution. Because AFM visualizes all molecules in a scanning area, an observation scaffold is required for the target-specific imaging of molecules in the dynamic state. The DNA origami technology allows the precise placement of target molecules in a designed nanostructure, and the detection of the molecules at the single-molecule level. DNA origami is applied for visualizing the detailed motions of molecules using high-speed AFM (HS-AFM), which enables the analysis of the dynamic movement of biomolecules in a subsecond time resolution. Here, we describe the combination of the DNA origami system with HS-AFM for the imaging of DNA structural changes controlled by photoresponsive molecules. The hybridization and dehybridization of photoresponsive oligonucleotides were visualized directly using this observation system. These target-oriented observation systems should contribute to the detailed analysis of biomolecules in real time with molecular resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torring T, Voigt NV, Nangreave J, Yan H, Gothelf KV (2011) DNA origami: a quantum leap for self-assembly of complex structures. Chem Soc Rev 40:5636–5646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rajendran A, Endo M, Sugiyama H (2012) Single-molecule analysis using DNA origami. Angew Chem Int Ed 51:874–890

    Article  CAS  Google Scholar 

  3. Endo M, Yang Y, Sugiyama H (2013) DNA origami technology for biomaterials applications. Biomater Sci 1:347–360

    Article  CAS  PubMed  Google Scholar 

  4. Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  PubMed  CAS  Google Scholar 

  5. Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98:12468–12472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ando T, Kodera N (2012) Visualization of mobility by atomic force microscopy. Methods Mol Biol 896:57–69

    PubMed  CAS  Google Scholar 

  7. Uchihashi T, Kodera N, Ando T (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protoc 7:1193–1206

    Article  PubMed  CAS  Google Scholar 

  8. Rajendran A, Endo M, Sugiyama H (2014) State-of-the-art high-speed atomic force microscopy for investigation of single-molecular dynamics of proteins. Chem Rev 114:1493–1520

    Article  PubMed  CAS  Google Scholar 

  9. Endo M, Katsuda Y, Hidaka K, Sugiyama H (2010) Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. J Am Chem Soc 132:1592–1597

    Article  PubMed  CAS  Google Scholar 

  10. Asanuma H, Liang X, Nishioka H, Matsunaga D, Liu M, Komiyama M (2007) Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat Protoc 2:203–212

    Article  PubMed  CAS  Google Scholar 

  11. Liang X, Mochizuki T, Asanuma H (2009) A supra-photoswitch involving sandwiched DNA base pairs and azobenzenes for light-driven nanostructures and nanodevices. Small 5:1761–1768

    Article  PubMed  CAS  Google Scholar 

  12. Endo M, Yang Y, Suzuki Y, Hidaka K, Sugiyama H (2012) Single-molecule visualization of the hybridization and dissociation of photoresponsive oligonucleotides and their reversible switching behavior in a DNA nanostructure. Angew Chem Int Ed 51:10518–10522

    Article  CAS  Google Scholar 

  13. Endo M, Katsuda Y, Hidaka K, Sugiyama H (2010) A versatile DNA nanochip for direct analysis of DNA base-excision repair. Angew Chem Int Ed 49:9412–9416

    Article  CAS  Google Scholar 

  14. Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37:5001–5006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI (grant numbers 15H03837, 16K14033, 16H06356) and a Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Robotics” (No. 24104002) from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Endo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Endo, M., Sugiyama, H. (2018). Direct Observation of Dynamic Movement of DNA Molecules in DNA Origami Imaged Using High-Speed AFM. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics