Skip to main content

Hydrolysis of ADP-Ribosylation by Macrodomains

  • Protocol
  • First Online:
ADP-ribosylation and NAD+ Utilizing Enzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1813))

  • 1708 Accesses

Abstract

ADP-ribosylation is the process of transferring the ADP-ribose moiety from NAD+ to a substrate. While a number of proteins represent well described substrates accepting ADP-ribose modification, a recent report demonstrated biological role for DNA ADP-ribosylation as well. The conserved macrodomain fold of several known hydrolyses was found to possess de-ADP-ribosylating activity and the ability to hydrolyze (reverse) ADP-ribosylation. Here we summarize the methods that can be employed to study mono-ADP-ribosylation hydrolysis by macrodomains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez-Gonzalez R, Althaus FR (1989) Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat Res 218(2):67–74

    Article  CAS  PubMed  Google Scholar 

  2. Barkauskaite E, Jankevicius G, Ahel I (2015) Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol Cell 58(6):935–946. https://doi.org/10.1016/j.molcel.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  3. Canto C, Menzies KJ, Auwerx J (2015) NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22(1):31–53. https://doi.org/10.1016/j.cmet.2015.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hottiger MO (2015) Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263. https://doi.org/10.1146/annurev-biochem-060614-034506

    Article  CAS  PubMed  Google Scholar 

  5. Lin W, Ame JC, Aboul-Ela N, Jacobson EL, Jacobson MK (1997) Isolation and characterization of the cDNA encoding bovine poly(ADP-ribose) glycohydrolase. J Biol Chem 272(18):11895–11901

    Article  CAS  PubMed  Google Scholar 

  6. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M, Leys D, Ahel I (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477(7366):616–620. https://doi.org/10.1038/nature10404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moss J, Stanley SJ, Nightingale MS, Murtagh JJ Jr, Monaco L, Mishima K, Chen HC, Williamson KC, Tsai SC (1992) Molecular and immunological characterization of ADP-ribosylarginine hydrolases. J Biol Chem 267(15):10481–10488

    CAS  PubMed  Google Scholar 

  8. Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 281(2):705–713. https://doi.org/10.1074/jbc.M510290200

    Article  CAS  PubMed  Google Scholar 

  9. Fontana P, Bonfiglio JJ, Palazzo L, Bartlett E, Matic I, Ahel I (2017) Serine ADP-ribosylation reversal by the hydrolase ARH3. Elife 6. pii: e28533. https://doi.org/10.7554/eLife.28533

  10. Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, Jankevicius G, Simpson MA, Matic I, Ozkan E, Golia B, Schellenberg MJ, Weston R, Williams JG, Rossi MN, Galehdari H, Krahn J, Wan A, Trembath RC, Crosby AH, Ahel D, Hay R, Ladurner AG, Timinszky G, Williams RS, Ahel I (2013) Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J 32(9):1225–1237. https://doi.org/10.1038/emboj.2013.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G, Ladurner AG (2013) A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 20(4):508–514. https://doi.org/10.1038/nsmb.2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, Imhof R, Winkler HC, Fischer D, Caflisch A, Hassa PO, Luscher B, Hottiger MO (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20(4):502–507. https://doi.org/10.1038/nsmb.2521

    Article  CAS  PubMed  Google Scholar 

  13. Palazzo L, Thomas B, Jemth AS, Colby T, Leidecker O, Feijs KL, Zaja R, Loseva O, Puigvert JC, Matic I, Helleday T, Ahel I (2015) Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem J 468(2):293–301. https://doi.org/10.1042/BJ20141554

    Article  CAS  PubMed  Google Scholar 

  14. Palazzo L, Daniels CM, Nettleship JE, Rahman N, McPherson RL, Ong SE, Kato K, Nureki O, Leung AK, Ahel I (2016) ENPP1 processes protein ADP-ribosylation in vitro. FEBS J 283(18):3371–3388. https://doi.org/10.1111/febs.13811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Palazzo L, Mikoc A, Ahel I (2017) ADP-ribosylation: new facets of an ancient modification. FEBS J 84(18):2932–2946. https://doi.org/10.1111/febs.14078

    Article  CAS  Google Scholar 

  16. Rack JG, Perina D, Ahel I (2016) Macrodomains: structure, function, evolution, and catalytic activities. Annu Rev Biochem 85:431–454. https://doi.org/10.1146/annurev-biochem-060815-014935

    Article  CAS  PubMed  Google Scholar 

  17. Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner AG (2005) Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 12(7):624–625

    Article  CAS  PubMed  Google Scholar 

  18. de Souza RF, Aravind L (2012) Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Mol Biosyst 8(6):1661–1677. https://doi.org/10.1039/c2mb05487f

    Article  CAS  PubMed  Google Scholar 

  19. Jankevicius G, Ariza A, Ahel M, Ahel I (2016) The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol Cell 64(6):1109–1116. https://doi.org/10.1016/j.molcel.2016.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Langelier MF, Planck JL, Roy S, Pascal JM (2012) Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336(6082):728–732. https://doi.org/10.1126/science.1216338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, Litchfield DW, Shilton BH, Luscher B (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32(1):57–69. https://doi.org/10.1016/j.molcel.2008.08.009

    Article  CAS  PubMed  Google Scholar 

  22. Clark NJ, Kramer M, Muthurajan UM, Luger K (2012) Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes. J Biol Chem 287(39):32430–32439. https://doi.org/10.1074/jbc.M112.397067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work in Ahel lab is supported by Wellcome Trust (grant number 101794), the European Research Council (grant number 281739) and by Cancer Research UK (grant number C35050/A22284). MPM is financed by Croatian National Centre of Research Excellence in Personalized Healthcare grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Ahel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Posavec Marjanovic´, M., Jankevicius, G., Ahel, I. (2018). Hydrolysis of ADP-Ribosylation by Macrodomains. In: Chang, P. (eds) ADP-ribosylation and NAD+ Utilizing Enzymes. Methods in Molecular Biology, vol 1813. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8588-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8588-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8587-6

  • Online ISBN: 978-1-4939-8588-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics