Skip to main content

Mono-ADP-Ribosylhydrolase Assays

  • Protocol
  • First Online:
ADP-ribosylation and NAD+ Utilizing Enzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1813))

Abstract

Despite substantial progress in ADP-ribosylation research in recent years, the identification of ADP-ribosylated proteins, their ADP-ribose acceptors sites, and the respective writers and erasers remains challenging. The use of recently developed mass spectrometric methods helps to further characterize the ADP-ribosylome and its regulatory enzymes under different conditions and in different cell types. Validation of these findings may be achieved by in vitro assays for the respective enzymes. In the below method, we describe how recombinant ADP-ribosylated proteins are demodified in vitro with mono-ADP-ribosylhydrolases of choice to elucidate substrate and potentially also site specificity of these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hottiger MO (2015) Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263

    Article  CAS  Google Scholar 

  2. Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26(5):417–432

    Article  Google Scholar 

  3. Barkauskaite E, Jankevicius G, Ahel I (2015) Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol Cell 58(6):935–946

    Article  CAS  Google Scholar 

  4. Caldecott KW (2014) Protein ADP-ribosylation and the cellular response to DNA strand breaks. DNA Repair 19:108–113

    Article  CAS  Google Scholar 

  5. Butepage M et al (2015) Intracellular mono-ADP-ribosylation in signaling and disease. Cell 4(4):569–595

    Article  Google Scholar 

  6. Laing S et al (2011) ADP-ribosylation of arginine. Amino Acids 41(2):257–269

    Article  CAS  Google Scholar 

  7. Du J, Jiang H, Lin H (2009) Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD. Biochemistry 48(13):2878–2890

    Article  CAS  Google Scholar 

  8. Pan PW et al (2011) Structure and biochemical functions of SIRT6. J Biol Chem 286(16):14575–14587

    Article  CAS  Google Scholar 

  9. Ueda K et al (1972) Poly ADP-ribose glycohydrolase from rat liver nuclei, a novel enzyme degrading the polymer. Biochem Biophys Res Commun 46(2):516–523

    Article  CAS  Google Scholar 

  10. Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 281(2):705–713

    Article  CAS  Google Scholar 

  11. Moss J, Jacobson MK, Stanley SJ (1985) Reversibility of arginine-specific mono(ADP-ribosyl)ation: identification in erythrocytes of an ADP-ribose-L-arginine cleavage enzyme. Proc Natl Acad Sci U S A 82(17):5603–5607

    Article  CAS  Google Scholar 

  12. Kato J et al (2011) ADP-ribosylarginine hydrolase regulates cell proliferation and tumorigenesis. Cancer Res 71(15):5327–5335

    Article  CAS  Google Scholar 

  13. Jankevicius G et al (2013) A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 20(4):508

    Article  CAS  Google Scholar 

  14. Rosenthal F et al (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20(4):502–507

    Article  CAS  Google Scholar 

  15. Sharifi R et al (2013) Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J 32(9):1225–1237

    Article  CAS  Google Scholar 

  16. Xi HQ, Zhao P, Han WD (2010) Clinicopathological significance and prognostic value of LRP16 expression in colorectal carcinoma. World J Gastroenterol 16(13):1644–1648

    Article  Google Scholar 

  17. Mohseni M et al (2014) MACROD2 overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers. Proc Natl Acad Sci U S A 111(49):17606–17611

    Article  CAS  Google Scholar 

  18. Zang L et al (2013) Identification of LRP16 as a negative regulator of insulin action and adipogenesis in 3T3-L1 adipocytes. Horm Metab Res 45(5):349–358

    Article  CAS  Google Scholar 

  19. Han WD et al (2007) Estrogenically regulated LRP16 interacts with estrogen receptor alpha and enhances the receptor’s transcriptional activity. Endocr Relat Cancer 14(3):741–753

    Article  CAS  Google Scholar 

  20. Yang J et al (2009) The single-macro domain protein LRP16 is an essential cofactor of androgen receptor. Endocr Relat Cancer 16(1):139–153

    Article  CAS  Google Scholar 

  21. Wu Z et al (2011) LRP16 integrates into NF-kappaB transcriptional complex and is required for its functional activation. PLoS One 6(3):e18157

    Article  CAS  Google Scholar 

  22. Abplanalp J et al (2017) Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat Commun 8(1):2055

    Article  Google Scholar 

  23. Fontana P et al (2017) Serine ADP-ribosylation reversal by the hydrolase ARH3. elife 6:e28533

    Google Scholar 

  24. Martello R et al (2016) Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue. Nat Commun 7:12917

    Article  CAS  Google Scholar 

  25. Bilan V et al (2017) Combining higher-energy collision dissociation and electron-transfer/higher-energy collision dissociation fragmentation in a product-dependent manner confidently assigns proteomewide ADP-ribose acceptor sites. Anal Chem 89(3):1523–1530

    Article  CAS  Google Scholar 

  26. Leidecker O et al (2016) Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat Chem Biol 12(12):998

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tobias Suter (University of Zurich) for providing editorial assistance and critical input during manuscript writing. Work on ADP-ribosyltransferases and hydrolases in the laboratory of MOH is supported by the Kanton of Zurich and the Swiss National Science Foundation (SNF 310030_157019 and 31003A_176177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. Hottiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abplanalp, J., Hopp, AK., Hottiger, M.O. (2018). Mono-ADP-Ribosylhydrolase Assays. In: Chang, P. (eds) ADP-ribosylation and NAD+ Utilizing Enzymes. Methods in Molecular Biology, vol 1813. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8588-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8588-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8587-6

  • Online ISBN: 978-1-4939-8588-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics