Skip to main content

Dielectrophoretic Stretching of DNA

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1811))

  • 1531 Accesses

Abstract

The spatial control of DNA and of self-assembled DNA constructs is a prerequisite for the preparation of DNA-based nanostructures and microstructures and a useful tool for studies on single DNA molecules. Here we describe a protocol for the accumulation of dissolved λ-DNA molecules between planar microelectrodes by the action of inhomogeneous radiofrequency electric fields. The resulting AC electrokinetic forces stretch the DNA molecules and align them parallel to the electric field. The electrode preparation from off-the-shelf electronic components is explained, and a detailed description of the electronic setup is given. The experimental procedure is controlled in real-time by fluorescence microscopy .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carbone A, Seeman NC (2002) Circuits and programmable self-assembling DNA structures. Proc Natl Acad Sci U S A 99:12577–12582. https://doi.org/10.1073/pnas.202418299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302. https://doi.org/10.1038/nature04586

    Article  CAS  PubMed  Google Scholar 

  3. Niemeyer CM (2007) Functional devices from DNA and proteins. Nano Today 2:42–52. https://doi.org/10.1016/S1748-0132(07)70058-0

    Article  Google Scholar 

  4. Bier FF, Hölzel R (2008) Nucleic acid based nanostructures—recent advancements and the impact of NUCAN. AIP Conf Proc 1062:3–12. https://doi.org/10.1063/1.3012301

    Article  CAS  Google Scholar 

  5. Washizu M, Kurosawa O (1990) Electrostatic manipulation of DNA in microfabricated structures. IEEE Trans Ind Appl 26:1165–1172

    Article  CAS  Google Scholar 

  6. Tuukkanen S, Kuzyk A, Toppari JJ, Häkkinen H, Hytönen VP, Niskanen E, Rinkiö M, Törmä P (2007) Trapping of 27 bp–8 kbp DNA and immobilization of thiol-modified DNA using dielectrophoresis. Nanotechnology 18:295204. https://doi.org/10.1088/0957-4484/18/29/295204

    Article  CAS  Google Scholar 

  7. Pohl H (1978) Dielectrophoresis. Cambridge University Press, Cambridge

    Google Scholar 

  8. Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811. https://doi.org/10.1063/1.3456626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hölzel R, Gajovic-Eichelmann N, Bier FF (2003) Oriented and vectorial immobilization of linear M13 dsDNA between interdigitated electrodes—towards single molecule DNA nanostructures. Biosens Bioelectron 18:555–564. https://doi.org/10.1016/S0956-5663(03)00024-1

    Article  CAS  PubMed  Google Scholar 

  10. Kumemura M, Collard D, Yamahata C, Sakaki N, Hashiguchi G, Fujita H (2007) Single DNA molecule isolation and trapping in a microfluidic device. ChemPhysChem 8:1875–1880. https://doi.org/10.1002/cphc.200700268

    Article  CAS  PubMed  Google Scholar 

  11. Hyun C, Kaur H, McNabb DS, Li J (2015) Dielectrophoretic stretching of DNA tethered to a fiber tip. Nanotechnology 26:125501. https://doi.org/10.1088/0957-4484/26/12/125501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tuukkanen S, Kuzyk A, Toppari JJ, Hytönen VP, Ihalainen T, Törmä P (2005) Dielectrophoresis of nanoscale double-stranded DNA and humidity effects on its electrical conductivity. Appl Phys Lett 87:183102. https://doi.org/10.1063/1.2117626

    Article  CAS  Google Scholar 

  13. Yamamoto T, Kurosawa O, Kabata H, Shimamoto M, Washizu M (2000) Molecular surgery of DNA based on electrostatic micromanipulation. IEEE Trans Ind Appl 36:1010–1017. https://doi.org/10.1109/IAS.1998.729860

    Article  CAS  Google Scholar 

  14. Henning A, Henkel J, Bier FF, Hölzel R (2008) Label-free electrical quantification of the dielectrophoretic response of DNA. BMC Biophys 1:4. https://doi.org/10.1186/1757-5036-1-4

    Article  Google Scholar 

  15. Henning A, Bier FF, Hölzel R (2010) Dielectrophoresis of DNA: quantification by impedance measurements. Biomicrofluidics 4:022803. https://doi.org/10.1063/1.3430550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li S, Yuan Q, Morshed BI, Ke C, Wu J, Jiang H (2013) Dielectrophoretic responses of DNA and fluorophore in physiological solution by impedimetric characterization. Biosens Bioelectron 41:649–655. https://doi.org/10.1016/j.bios.2012.09.036

    Article  CAS  PubMed  Google Scholar 

  17. Stanke S, Bier FF, Hölzel R (2011) Fluid streaming above interdigitated electrodes in dielectrophoresis experiments. Electrophoresis 32:2448–2245. https://doi.org/10.1002/elps.201100096

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Katrin Nicklas for help with electrode preparations. Financial support by The Brandenburg Ministry of Sciences, Research and Cultural Affairs (MWFK) within the framework StaF and by the European Regional Development Fund (ERDF) is gratefully acknowledged. We also thank the German Research Foundation (DFG) for funding in the program Essence (SPP 1857 HO1298/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Hölzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Laux, EM., Bier, F.F., Hölzel, R. (2018). Dielectrophoretic Stretching of DNA. In: Zuccheri, G. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 1811. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8582-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8582-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8581-4

  • Online ISBN: 978-1-4939-8582-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics