Skip to main content

Biochemical Characterization of Dopamine D2 Receptor-Associated Protein Complexes Using Co-Immunoprecipitation and Protein Affinity Purification Assays

  • Protocol
  • First Online:
  • 662 Accesses

Part of the book series: Neuromethods ((NM,volume 140))

Abstract

Schizophrenia is a devastating mental disorder, affecting almost 1% of the world population, and has a tremendous effect on social and occupational functioning. Dopamine D2 receptors (D2Rs) are the main targets of typical antipsychotic medications for schizophrenia, where they can effectively alleviate the positive symptoms by antagonizing D2Rs. Thus, investigating different modulation of D2R function is important in identifying novel drug targets and therapeutics for better outcomes in schizophrenia. Protein–protein interactions between D2Rs and other proteins are critical in regulating D2R signaling and subsequent downstream physiological functions. Here we described various biochemical methods including co-immunoprecipitation and protein affinity purification assays, that are commonly used to characterize D2R-associated protein complexes. Specifically, we reviewed the D2R–D1R and D2R–DISC1 interactions and discussed their association in the pathophysiology of schizophrenia. This chapter aims to provide systemic guidelines for the standard biochemical techniques in identifying D2R-associated protein–protein interactions, and to investigate the roles of these interactions in the brain.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. van Os J, Kapur S (2009) Schizophrenia. Lancet 374:635–645

    Article  CAS  PubMed  Google Scholar 

  2. Taly A (2013) Novel approaches to drug design for the treatment of schizophrenia. Expert Opin Drug Discov 8:1285–1296

    Article  CAS  PubMed  Google Scholar 

  3. Wong AH, Van Tol HH (2003) Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev 27:269–306

    Article  PubMed  Google Scholar 

  4. Glatt SJ et al (2003) Meta-analysis identifies an association between the dopamine D2 receptor gene and schizophrenia. Mol Psychiatry 8:911–915

    Article  CAS  PubMed  Google Scholar 

  5. Seeman P, Kapur S (2000) Schizophrenia: more dopamine, more D2 receptors. Proc Natl Acad Sci U S A 97:7673–7675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roberts DA et al (1994) The abundance of mRNA for dopamine D2 receptor isoforms in brain tissue from controls and schizophrenics. Brain Res Mol Brain Res 25:173–175

    Article  CAS  PubMed  Google Scholar 

  7. Bertorello AM et al (1990) Inhibition by dopamine of (Na(+)+K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature 347:386–388

    Article  CAS  PubMed  Google Scholar 

  8. Missale C et al (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    Article  CAS  Google Scholar 

  9. Neve KA et al (2004) Dopamine receptor signaling. J Recept Signal Transduct Res 24:165–205

    Article  CAS  PubMed  Google Scholar 

  10. Beaulieu JM et al (2007) The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol Sci 28:166–172

    Article  CAS  PubMed  Google Scholar 

  11. Beaulieu JM et al (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347

    Article  CAS  PubMed  Google Scholar 

  12. Beaulieu JM et al (2008) A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132:125–136

    Article  CAS  PubMed  Google Scholar 

  13. Beaulieu JM et al (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273

    Article  CAS  PubMed  Google Scholar 

  14. Beaulieu JM et al (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A 101:5099–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beaulieu JM et al (2007) Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci 27:881–885

    Article  CAS  PubMed  Google Scholar 

  16. Su P et al (2015) Protein interactions with dopamine receptors as potential new drug targets for treating schizophrenia. In: Lipina T, Roder J (eds) Drug discovery for schizophrenia, 1st edn. Royal Society of Chemistry, London, pp 202–233

    Chapter  Google Scholar 

  17. Fuxe K et al (2014) Dopamine D2 heteroreceptor complexes and their receptor-receptor interactions in ventral striatum: novel targets for antipsychotic drugs. Prog Brain Res 211:113–139

    Article  CAS  PubMed  Google Scholar 

  18. Shioda N et al (2010) Advanced research on dopamine signaling to develop drugs for the treatment of mental disorders: proteins interacting with the third cytoplasmic loop of dopamine D2 and D3 receptors. J Pharmacol Sci 114:25–31

    Article  CAS  PubMed  Google Scholar 

  19. Wang M et al (2008) Dopamine receptor interacting proteins (DRIPs) of dopamine D1-like receptors in the central nervous system. Mol Cells 25:149–157

    PubMed  Google Scholar 

  20. Lee SP et al (2004) Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 279:35671–35678

    Article  CAS  PubMed  Google Scholar 

  21. So CH et al (2005) D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Mol Pharmacol 68:568–578

    PubMed  CAS  Google Scholar 

  22. Pei L et al (2010) Uncoupling the dopamine D1-D2 receptor complex exerts antidepressant-like effects. Nat Med 16:1393–1395

    Article  CAS  PubMed  Google Scholar 

  23. Rashid AJ et al (2007) D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci U S A 104:654–659

    Article  CAS  PubMed  Google Scholar 

  24. So CH et al (2007) Desensitization of the dopamine D1 and D2 receptor hetero-oligomer mediated calcium signal by agonist occupancy of either receptor. Mol Pharmacol 72:450–462

    Article  CAS  PubMed  Google Scholar 

  25. Brown V, Liu F (2014) Intranasal delivery of a peptide with antidepressant-like effect. Neuropsychopharmacology 39:2131–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dziedzicka-Wasylewska M et al (2008) Mechanism of action of clozapine in the context of dopamine D1-D2 receptor hetero-dimerization—a working hypothesis. Pharmacol Rep 60:581–587

    PubMed  CAS  Google Scholar 

  27. Faron-Gorecka A et al (2008) The role of D1-D2 receptor hetero-dimerization in the mechanism of action of clozapine. Eur Neuropsychopharmacol 18:682–691

    Article  CAS  PubMed  Google Scholar 

  28. Brandon NJ, Sawa A (2011) Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 12:707–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hodgkinson CA et al (2004) Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 75:862–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Porteous DJ et al (2011) DISC1 at 10: connecting psychiatric genetics and neuroscience. Trends Mol Med 17:699–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taylor MS et al (2003) Evolutionary constraints on the disrupted in schizophrenia locus. Genomics 81:67–77

    Article  CAS  PubMed  Google Scholar 

  32. Johnstone M et al (2015) Copy number variations in DISC1 and DISC1-Interacting partners in major mental illness. Mol Neuropsychiatry 1:175–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo X et al (2016) Association study of DISC1 genetic variants with the risk of schizophrenia. Psychiatr Genet 26:132–135

    Article  CAS  PubMed  Google Scholar 

  34. Thomson PA et al (2014) 708 Common and 2010 rare DISC1 locus variants identified in 1542 subjects: analysis for association with psychiatric disorder and cognitive traits. Mol Psychiatry 19:668–675

    Article  CAS  PubMed  Google Scholar 

  35. Duan X et al (2007) Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130:1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee FH et al (2011) Disc1 point mutations in mice affect development of the cerebral cortex. J Neurosci 31:3197–3206

    Article  CAS  PubMed  Google Scholar 

  37. Teng S et al (2017) Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia. Mol Psychiatry. https://doi.org/10.1038/mp.2017.115

  38. Enomoto A et al (2009) Roles of disrupted-in-schizophrenia 1-interacting protein girdin in postnatal development of the dentate gyrus. Neuron 63:774–787

    Article  CAS  PubMed  Google Scholar 

  39. Kim JY et al (2012) Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 148:1051–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clapcote SJ et al (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54:387–402

    Article  CAS  PubMed  Google Scholar 

  41. Su P et al (2014) A dopamine D2 receptor-DISC1 protein complex may contribute to antipsychotic-like effects. Neuron 84:1302–1316

    Article  CAS  PubMed  Google Scholar 

  42. Jaaro-Peled H et al (2013) Subcortical dopaminergic deficits in a DISC1 mutant model: a study in direct reference to human molecular brain imaging. Hum Mol Genet 22:1574–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Laruelle M (1998) Imaging dopamine transmission in schizophrenia. A review and meta-analysis. Q J Nucl Med 42:211–221

    PubMed  CAS  Google Scholar 

  44. Abi-Dargham A (2009) The neurochemistry of schizophrenia : a focus on dopamine and glutamate. In: Charney DS, Nestler EJ (eds) Neurobiology of mental illness, 3rd edn. Oxford University Press, New York, pp 321–328

    Google Scholar 

  45. Abi-Dargham A et al (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767

    Article  CAS  PubMed  Google Scholar 

  46. Trossbach SV et al (2016) Misassembly of full-length Disrupted-in-Schizophrenia 1 protein is linked to altered dopamine homeostasis and behavioral deficits. Mol Psychiatry 21:1561–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dahoun T et al (2017) The impact of Disrupted-in-Schizophrenia 1 (DISC1) on the dopaminergic system: a systematic review. Transl Psychiatry 7:e1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Su P et al (2014) Study of crosstalk between dopamine receptors and ion channels. In: Tiberi M (ed) Dopamine receptor technologies, 1st edn. Humana, New York, pp 277–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Su, P., Lee, F.H.F., Liu, F. (2018). Biochemical Characterization of Dopamine D2 Receptor-Associated Protein Complexes Using Co-Immunoprecipitation and Protein Affinity Purification Assays. In: FUXE, K., Borroto-Escuela, D. (eds) Receptor-Receptor Interactions in the Central Nervous System. Neuromethods, vol 140. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8576-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8576-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8575-3

  • Online ISBN: 978-1-4939-8576-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics