Skip to main content

Single-Molecule FRET Analysis of Replicative Helicases

  • Protocol
  • First Online:
Molecular Motors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1805))

Abstract

Over the recent years single-molecule fluorescence resonance energy transfer (smFRET) technique has proven to be one of the most powerful tools for revealing mechanistic insights into helicase activities. Here we describe details of single-molecule FRET assays for probing DNA unwinding activities as well as functional dynamics by replicative helicases in real time. The ability of smFRET to measure the behavior of biomolecules at a nanometer scale enabled us to address how the leading and lagging strand synthesis are coordinated during DNA replication, to resolve DNA unwinding steps of Bacteriophage T7 helicase, and to observe heterogeneous unwinding patterns modulated by the DNA binding domain of E1 helicase. These single-molecule FRET assays are generally applicable to other replicative and nonreplicative hexameric helicases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ha T et al (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93(13):6264–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ha T et al (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli rep helicase. Nature 419(6907):638–641

    Article  CAS  PubMed  Google Scholar 

  3. Bianco PR et al (2001) Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409(6818):374–378

    Article  CAS  PubMed  Google Scholar 

  4. Dohoney KM, Gelles J (2001) Chi-sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules. Nature 409(6818):370–374

    Article  CAS  PubMed  Google Scholar 

  5. Spies M et al (2003) A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell 114(5):647–654

    Article  CAS  PubMed  Google Scholar 

  6. Dessinges MN, Lionnet T, Xi XG, Bensimon D, Croquette V (2004) Single-molecule assay reveals strand switching and enhanced processivity of UvrD. Proc Natl Acad Sci U S A 101(17):6439–6444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Myong S, Rasnik I, Joo C, Lohman TM, Ha T (2005) Repetitive shuttling of a motor protein on DNA. Nature 437(7063):1321–1325

    Article  CAS  PubMed  Google Scholar 

  8. Lee JB et al (2006) DNA primase acts as a molecular brake in DNA replication. Nature 439(7076):621–624

    Article  CAS  PubMed  Google Scholar 

  9. Cheng W, Dumont S, Tinoco I Jr, Bustamante C (2007) NS3 helicase actively separates RNA strands and senses sequence barriers ahead of the opening fork. Proc Natl Acad Sci U S A 104(35):13954–13959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson DS, Bai L, Smith BY, Patel SS, Wang MD (2007) Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 129(7):1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Myong S et al (2009) Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA. Science 323(5917):1070–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karunatilaka KS, Solem A, Pyle AM, Rueda D (2010) Single-molecule analysis of Mss116-mediated group II intron folding. Nature 467(7318):935–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park J et al (2010) PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell 142(4):544–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun B et al (2011) ATP-induced helicase slippage reveals highly coordinated subunits. Nature 478(7367):132–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yardimci H et al (2012) Bypass of a protein barrier by a replicative DNA helicase. Nature 492(7428):205–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Perkins TT, Li HW, Dalal RV, Gelles J, Block SM (2004) Forward and reverse motion of single RecBCD molecules on DNA. Biophys J 86(3):1640–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Myong S, Bruno MM, Pyle AM, Ha T (2007) Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science 317(5837):513–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yodh JG, Stevens BC, Kanagaraj R, Janscak P, Ha T (2009) BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation. EMBO J 28(4):405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yodh JG, Schlierf M, Ha T (2010) Insight into helicase mechanism and function revealed through single-molecule approaches. Q Rev Biophys 43(2):185–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pandey M et al (2009) Coordinating DNA replication by means of priming loop and differential synthesis rate. Nature 462(7275):940–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee SJ et al (2014) Dynamic look at DNA unwinding by a replicative helicase. Proc Natl Acad Sci U S A 111(9):E827–E835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Syed S, Pandey M, Patel SS, Ha T (2014) Single-molecule fluorescence reveals the unwinding stepping mechanism of replicative helicase. Cell Rep 6(6):1037–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25(1):78–86

    Article  CAS  PubMed  Google Scholar 

  24. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76

    Article  CAS  PubMed  Google Scholar 

  25. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Diao J et al (2012) A single vesicle-vesicle fusion assay for in vitro studies of SNAREs and accessory proteins. Nat Protoc 7(5):921–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ha T (2001) Single-molecule fluorescence methods for the study of nucleic acids. Curr Opin Struct Biol 11(3):287–292

    Article  CAS  PubMed  Google Scholar 

  28. Benkovic SJ, Valentine AM, Salinas F (2001) Replisome-mediated DNA replication. Annu Rev Biochem 70:181–208

    Article  CAS  PubMed  Google Scholar 

  29. O'Donnell M (2006) Replisome architecture and dynamics in Escherichia coli. J Biol Chem 281(16):10653–10656

    Article  CAS  PubMed  Google Scholar 

  30. Stano NM et al (2005) DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature 435(7040):370–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamdan SM, Richardson CC (2009) Motors, switches, and contacts in the replisome. Annu Rev Biochem 78:205–243

    Article  CAS  PubMed  Google Scholar 

  32. Kerssemakers JW et al (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442(7103):709–712

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the members of Ha laboratory for valuable discussions and experimental help. These studies were supported by grants from the National Institute of Health and the National Science Foundation. T.H. is an Investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekjip Ha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, SJ., Syed, S., Ha, T. (2018). Single-Molecule FRET Analysis of Replicative Helicases. In: Lavelle, C. (eds) Molecular Motors. Methods in Molecular Biology, vol 1805. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8556-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8556-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8554-8

  • Online ISBN: 978-1-4939-8556-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics