Skip to main content

Ion Channels in Drug Discovery and Safety Pharmacology

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1800))

Abstract

Ion channels are membrane proteins involved in almost all physiological processes, including neurotransmission, muscle contraction, pace-making activity, secretion, electrolyte and water balance, immune response, and cell proliferation. Due to their broad distribution in human body and physiological roles, ion channels are attractive targets for drug discovery and safety pharmacology. Over the years ion channels have been associated to many genetic diseases (“channelopathies”). For most of these diseases the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a number of patients. The search for the development of new and more specific therapeutic approaches is therefore strongly pursued. At the same time acquired channelopathies or dangerous side effects (such as proarrhythmic risk) can develop as a consequence of drugs unexpectedly targeting ion channels. Several noncardiovascular drugs are known to block cardiac ion channels, leading to potentially fatal delayed ventricular repolarization. Thus, the search of reliable preclinical cardiac safety testing in early stage of drug discovery is mandatory. To fulfill these needs, both ion channels drug discovery and toxicology strategies are evolving toward comprehensive research approaches integrating ad hoc designed in silico predictions and experimental studies for a more reliable and quick translation of results to the clinic side.

Here we discuss two examples of how the combination of in silico methods and patch clamp experiments can help addressing drug discovery and safety issues regarding ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Imbrici P, Liantonio A, Camerino GM et al (2016) Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 7:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Catterall WA, Swanson TM (2015) Structural basis for pharmacology of voltage-gated sodium and calcium channels. Mol Pharmacol 88:141–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Imbrici P, Altamura C, Camerino GM et al (2016) Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies. FASEB J 30:3285–3295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Imbrici P, Conte D, Liantonio A (2017) Paving the way for Bartter syndrome type 3 drug discovery: a hope from basic research. J Physiol 595:5403–5404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Jentsch TJ (2015) Discovery of CLC transport proteins: cloning, structure, function and pathophysiology. J Physiol 593:4091–4109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Verkman AS, Galietta LJV (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8:153–171

    Article  PubMed  CAS  Google Scholar 

  7. Huang H, Pugsley MK, Fermini B, Curtis MJ, Koerner J, Accardi M, Authier S (2017) Cardiac voltage-gated ion channels in safety pharmacology: review of the landscape leading to the CiPA initiative. J Pharmacol Toxicol Methods 87:11–23

    Article  PubMed  CAS  Google Scholar 

  8. Lynch JJ, Van Vleet TR, Mittelstadt SW, Blomme EAG (2017) Potential functional and pathological side effects related to off-target pharmacological activity. J Pharmacol Toxicol Methods 87:108–126

    Article  PubMed  CAS  Google Scholar 

  9. Accardi MV, Pugsley MK, Forster R, Troncy E, Huang H, Authier S (2016) The emerging role of in vitro electrophysiological methods in CNS safety pharmacology. J Pharmacol Toxicol Methods 81:47–59

    Article  PubMed  CAS  Google Scholar 

  10. Tikhonov DB, Zhorov BS (2012) Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure. Mol Pharmacol 82:97–104

    Article  PubMed  CAS  Google Scholar 

  11. Feng L, Campbell EB, Hsiung Y, MacKinnon R (2010) Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330:635–641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zou B (2015) Ion channel profiling to advance drug discovery and development. Drug Discov Today Technol 18:18–23

    Article  PubMed  Google Scholar 

  13. Skalova S, Svadlakova T, Shaikh Qureshi WM, Dev K, Mokry J (2015) Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine. Int J Mol Sci 16:4043–4067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jan LY, Jan YN (2012) Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol 590:2591–2599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67:821–870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gintant G, Sager PT, Stockbridge N (2016) Evolution of strategies to improve preclinical cardiac safety testing. Nat Rev Drug Discov 15:457–471

    Article  PubMed  CAS  Google Scholar 

  17. Gintant G, Fermini B, Stockbridge N, Strauss D (2017) The evolving roles of human iPSC-derived cardiomyocytes in drug safety and discovery. Cell Stem Cell 21:14–17

    Article  PubMed  CAS  Google Scholar 

  18. Lavecchia A, Cerchia C (2016) In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov Today 21:288–298

    Article  PubMed  CAS  Google Scholar 

  19. Langer T, Wermuth C-G (2012) Selective optimization of side activities (SOSA): a promising way for drug discovery. In: Peters J-U (ed) Polypharmacology in drug discovery, 1st edn. John Wiley & Sons, Inc., New York, NY

    Google Scholar 

  20. Imbrici P, Tricarico D, Mangiatordi GF, Nicolotti O, Lograno MD, Conte D, Liantonio A (2017) Pharmacovigilance database search discloses ClC-K channels as a novel target of the AT1 receptor blockers valsartan and olmesartan. Br J Pharmacol 174:1972–1983

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Fermini B, Hancox JC, Abi-Gerges N et al (2016) A new perspective in the field of cardiac safety testing through the comprehensive in vitro proarrhythmia assay paradigm. J Biomol Screen 21:1–11

    Article  PubMed  CAS  Google Scholar 

  22. Fahlke C, Fischer M (2010) Physiology and pathophysiology of ClC-K/barttin channels. Front Physiol 1:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Birkenhäger R, Otto E, Schürmann MJ et al (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314

    Article  PubMed  Google Scholar 

  24. Simon DB, Bindra RS, Mansfield TA et al (1997) Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 17:171–178

    Article  PubMed  CAS  Google Scholar 

  25. Imbrici P, Liantonio A, Gradogna A, Pusch M, Camerino DC (2014) Targeting kidney CLC-K channels: pharmacological profile in a human cell line versus Xenopus oocytes. Biochim Biophys Acta 1838:2484–2491

    Article  PubMed  CAS  Google Scholar 

  26. Loudon KW, Fry AC (2014) The renal channelopathies. Ann Clin Biochem 51:441–458

    Article  PubMed  CAS  Google Scholar 

  27. Zieg J, Gonsorcikova L, Landau D (2016) Current views on the diagnosis and management of hypokalaemia in children. Acta Paediatr 105:762–772

    Article  PubMed  Google Scholar 

  28. Mele A, Calzolaro S, Cannone G, Cetrone M, Conte D, Tricarico D (2014) Database search of spontaneous reports and pharmacological investigations on the sulfonylureas and glinides-induced atrophy in skeletal muscle. Pharmacol Res Perspect 2(1):e00028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pitts PJ, Louet HL, Moride Y, Conti RM (2016) 21st century pharmacovigilance: efforts, roles, and responsibilities. Lancet Oncol 17:e486–e492

    Article  PubMed  Google Scholar 

  30. Evans SJ, Waller PC, Davis S (2001) Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf 10:483–486

    Article  PubMed  CAS  Google Scholar 

  31. Reinalter SC, Jeck N, Peters M, Seyberth HW (2004) Pharmacotyping of hypokalaemic salt-losing tubular disorders. Acta Physiol Scand 181:513–521

    Article  PubMed  CAS  Google Scholar 

  32. Lupoli S, Salvi E, Barcella M, Barlassina C (2015) Pharmacogenomics considerations in the control of hypertension. Pharmacogenomics 16:1951–1964

    Article  PubMed  CAS  Google Scholar 

  33. Lazelle RA, McCully BH, Terker AS, Himmerkus N, Blankenstein KI, Mutig K, Bleich M, Bachmann S, Yang C-L, Ellison DH (2016) Renal deletion of 12 kDa FK506-binding protein attenuates tacrolimus-induced hypertension. J Am Soc Nephrol 27:1456–1464

    Article  PubMed  CAS  Google Scholar 

  34. Chen Y-S, Fang H-C, Chou K-J, Lee P-T, Hsu C-Y, Huang W-C, Chung H-M, Chen C-L (2009) Gentamicin-induced Bartter-like syndrome. Am J Kidney Dis 54:1158–1161

    Article  PubMed  Google Scholar 

  35. Zietse R, Zoutendijk R, Hoorn EJ (2009) Fluid, electrolyte and acid-base disorders associated with antibiotic therapy. Nat Rev Nephrol 5:193–202

    Article  PubMed  CAS  Google Scholar 

  36. Liantonio A, Picollo A, Babini E, Carbonara G, Fracchiolla G, Loiodice F, Tortorella V, Pusch M, Camerino DC (2006) Activation and inhibition of kidney CLC-K chloride channels by fenamates. Mol Pharmacol 69:165–173

    PubMed  CAS  Google Scholar 

  37. Liantonio A, Picollo A, Carbonara G et al (2008) Molecular switch for CLC-K Cl- channel block/activation: optimal pharmacophoric requirements towards high-affinity ligands. Proc Natl Acad Sci U S A 105:1369–1373

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liantonio A, Imbrici P, Camerino GM et al (2016) Kidney CLC-K chloride channels inhibitors: structure-based studies and efficacy in hypertension and associated CLC-K polymorphisms. J Hypertens 34:981–992

    Article  PubMed  CAS  Google Scholar 

  39. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294

    Article  PubMed  CAS  Google Scholar 

  40. Gradogna A, Imbrici P, Zifarelli G, Liantonio A, Camerino DC, Pusch M (2014) I–J loop involvement in the pharmacological profile of CLC-K channels expressed in Xenopus oocytes. Biochim Biophys Acta 1838:2745–2756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Small-molecule drug discovery suite 2015-3: Schrödinger suite 2015-3 induced fit docking protocol; glide version 6.8, Schrödinger, LLC, New York, NY, 2015; Prime version 4.1, Schrödinger, LLC, New York, NY, 2015

    Google Scholar 

  42. Cheng C-J, Rodan AR, Huang C-L (2017) Emerging targets of diuretic therapy. Clin Pharmacol Ther 102:420–435

    Article  PubMed  CAS  Google Scholar 

  43. Windley MJ, Abi-Gerges N, Fermini B, Hancox JC, Vandenberg JI, Hill AP (2017) Measuring kinetics and potency of hERG block for CiPA. J Pharmacol Toxicol Methods 87:99–107

    Article  PubMed  CAS  Google Scholar 

  44. O’Hara T, Virág L, Varró A, Rudy Y (2011) Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 7:e1002061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Cavero I, Holzgrefe H (2015) CiPA: ongoing testing, future qualification procedures, and pending issues. J Pharmacol Toxicol Methods 76:27–37

    Article  PubMed  CAS  Google Scholar 

  46. Li Z, Dutta S, Sheng J, Tran PN, Wu W, Chang K, Mdluli T, Strauss DG, Colatsky T (2017) Improving the in silico assessment of proarrhythmia risk by combining hERG (Human Ether-à-go-go-related gene) Channel-drug binding kinetics and multichannel pharmacology. Circ Arrhythm Electrophysiol 10:e004628

    Article  PubMed  CAS  Google Scholar 

  47. McCallum L, Lip S, Padmanabhan S (2015) The hidden hand of chloride in hypertension. Pflugers Arch 467:595–603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Imbrici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Imbrici, P., Nicolotti, O., Leonetti, F., Conte, D., Liantonio, A. (2018). Ion Channels in Drug Discovery and Safety Pharmacology. In: Nicolotti, O. (eds) Computational Toxicology. Methods in Molecular Biology, vol 1800. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7899-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7899-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7898-4

  • Online ISBN: 978-1-4939-7899-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics