Skip to main content

Computational Toxicology Methods in Chemical Library Design and High-Throughput Screening Hit Validation

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1800))

Abstract

The discovery of molecular toxicity in a clinical drug candidate can have a significant impact on both the cost and timeline of the drug discovery process. Early identification of potentially toxic compounds during screening library preparation or, alternatively, during the hit validation process, is critical to ensure that valuable time and resources are not spent pursuing compounds that may possess a high propensity for human toxicity. This chapter focuses on the application of computational molecular filters, applied either prescreening or postscreening, to identify and remove known reactive and/or potentially toxic compounds from consideration in drug discovery campaigns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14:475–486

    Article  CAS  PubMed  Google Scholar 

  2. Hughes JD, Blagg J, Price DA, Bailey S, Decrescenzo GA, Devraj RV, Ellsworth E, Fobian YM, Gibbs ME, Gilles RW, Greene N, Huang E, Krieger-Burke T, Loesel J, Wager T, Whiteley L, Zhang Y (2008) Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 18:4872–4875

    Article  CAS  PubMed  Google Scholar 

  3. Price DA, Blagg J, Jones L, Greene N, Wager T (2009) Physicochemical drug properties associated with in vivo toxicological outcomes: a review. Expert Opin Drug Metab Toxicol 5:921–931

    Article  CAS  PubMed  Google Scholar 

  4. Barratt MD (2000) Prediction of toxicity from chemical structure. Cell Biol Toxicol 16:1–13

    Article  CAS  PubMed  Google Scholar 

  5. Rishton GM (1997) Reactive compounds and in vitro false positives in HTS. Drug Discov Today 2:382–384

    Article  CAS  Google Scholar 

  6. Bruns RF, Watson IA (2012) Rules for identifying potentially reactive or promiscuous compounds. J Med Chem 55:9763–9772

    Article  CAS  PubMed  Google Scholar 

  7. Goh GB, Hodas NO, Vishnu A (2017) Deep learning for computational chemistry. J Comput Chem 38:1291–1307

    Article  CAS  PubMed  Google Scholar 

  8. Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inform 35:3–14

    Article  CAS  PubMed  Google Scholar 

  9. van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204

    PubMed  Google Scholar 

  10. Bugrim A, Nikolskaya T, Nikolsky Y (2004) Early prediction of drug metabolism and toxicity: systems biology approach and modeling. Drug Discov Today 9:127–135

    Article  CAS  PubMed  Google Scholar 

  11. Segall MD, Barber C (2014) Addressing toxicity risk when designing and selecting compounds in early drug discovery. Drug Discov Today 19:688–693

    Article  CAS  PubMed  Google Scholar 

  12. Gertrudes JC, Maltarollo VG, Silva RA, Oliveira PR, Honorio KM, da Silva AB (2012) Machine learning techniques and drug design. Curr Med Chem 19:4289–4297

    Article  CAS  PubMed  Google Scholar 

  13. Moroy G, Martiny VY, Vayer P, Villoutreix BO, Miteva MA (2012) Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 17:44–55

    Article  CAS  PubMed  Google Scholar 

  14. Gini G (2016) QSAR methods. Methods Mol Biol 1425:1–20

    Article  CAS  PubMed  Google Scholar 

  15. Singh PK, Negi A, Gupta PK, Chauhan M, Kumar R (2016) Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations. Arch Toxicol 90:1785–1802

    Article  CAS  PubMed  Google Scholar 

  16. Rishton GM (2003) Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov Today 8:86–96

    Article  CAS  PubMed  Google Scholar 

  17. Pearce BC, Sofia MJ, Good AC, Drexler DM, Stock DA (2006) An empirical process for the design of high-throughput screening deck filters. J Chem Inf Model 46:1060–1068

    Article  CAS  PubMed  Google Scholar 

  18. Walters WP, Ajay, Murcko MA (1999) Recognizing molecules with drug-like properties. Curr Opin Chem Biol 3:384–387

    Article  CAS  PubMed  Google Scholar 

  19. Cumming JG, Davis AM, Muresan S, Haeberlein M, Chen H (2013) Chemical predictive modelling to improve compound quality. Nat Rev Drug Discov 12:948–962

    Article  CAS  PubMed  Google Scholar 

  20. Sushko I, Salmina E, Potemkin VA, Poda G, Tetko IV (2012) ToxAlerts: a Web server of structural alerts for toxic chemicals and compounds with potential adverse reactions. J Chem Inf Model 52:2310–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    Article  CAS  PubMed  Google Scholar 

  22. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  23. Teague SJ, Davis AM, Leeson PD, Oprea T (1999) The design of leadlike combinatorial libraries. Angew Chem Int Ed Engl 38:3743–3748

    Article  CAS  PubMed  Google Scholar 

  24. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    Article  CAS  PubMed  Google Scholar 

  25. Dahlin JL, Nissink JW, Strasser JM, Francis S, Higgins L, Zhou H, Zhang Z, Walters MA (2015) PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J Med Chem 58:2091–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dolle RE (2011) Historical overview of chemical library design. Methods Mol Biol 685:3–25

    Article  CAS  PubMed  Google Scholar 

  27. Lagorce D, Sperandio O, Baell JB, Miteva MA, Villoutreix BO (2015) FAF-Drugs3: a web server for compound property calculation and chemical library design. Nucleic Acids Res 43(W1):W200–W207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sterling T, Irwin JJ (2015) ZINC 15 – ligand discovery for everyone. J Chem Inf Model 55(11):2324–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abreu RM, Froufe HJ, Daniel PO, Queiroz MJ, Ferreira IC (2011) ChemT, an open-source software for building template-based chemical libraries. SAR QSAR Environ Res 22:603–610

    Article  CAS  PubMed  Google Scholar 

  30. Sanz F, Carrio P, Lopez O, Capoferri L, Kooi DP, Vermeulen NP, Geerke DP, Montanari F, Ecker GF, Schwab CH, Kleinoder T, Magdziarz T, Pastor M (2015) Integrative modeling strategies for predicting drug toxicities at the eTOX project. Mol Inform 34:477–484

    Article  CAS  PubMed  Google Scholar 

  31. Fowler S, Schnall JG (2014) TOXNET: information on toxicology and environmental health. Am J Nurs 114:61–63

    Article  PubMed  Google Scholar 

  32. Wexler P (2001) TOXNET: an evolving web resource for toxicology and environmental health information. Toxicology 157:3–10

    Article  CAS  PubMed  Google Scholar 

  33. Zhu T, Cao S, Su PC, Patel R, Shah D, Chokshi HB, Szukala R, Johnson ME, Hevener KE (2013) Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis. J Med Chem 56:6560–6572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blagg J (2010) Structural alerts for toxicity. In: Abraham DJ, Rotella DP (eds) Burger’s medicinal chemistry and drug discovery, 7th edn. Wiley, Hoboken, pp 301–334

    Google Scholar 

  35. Smith GF (2011) Designing drugs to avoid toxicity. Prog Med Chem 50:1–47

    Article  CAS  PubMed  Google Scholar 

  36. Kazius J, McGuire R, Bursi R (2005) Derivation and validation of toxicophores for mutagenicity prediction. J Med Chem 48:312–320

    Article  CAS  PubMed  Google Scholar 

  37. SMARTS – a language for describing molecular patterns. Daylight Chemical Information Systems, Inc. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. Accessed 20 Dec 2017

  38. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening - an overview. Drug Discov Today 3:160–178

    Article  CAS  Google Scholar 

  39. Williams DP, Naisbitt DJ (2002) Toxicophores: groups and metabolic routes associated with increased safety risk. Curr Opin Drug Discov Dev 5:104–115

    CAS  Google Scholar 

  40. Hakimelahi GH, Khodarahmi GA (2005) The identification of toxicophores for the prediction of mutagenicity, hepatotoxicity and cardiotoxicity. J Iran Chem Soc 2:244–267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant AI126755 and faculty development program funding from UTHSC College of Pharmacy to K.E.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk E. Hevener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hevener, K.E. (2018). Computational Toxicology Methods in Chemical Library Design and High-Throughput Screening Hit Validation. In: Nicolotti, O. (eds) Computational Toxicology. Methods in Molecular Biology, vol 1800. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7899-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7899-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7898-4

  • Online ISBN: 978-1-4939-7899-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics