Skip to main content

Encapsulation of Active Enzymes within Bacteriophage P22 Virus-Like Particles

  • Protocol
  • First Online:
Protein Scaffolds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1798))

Abstract

Virus-like particles (VLPs) are nonpathogenic protein cage structures derived from viral coat proteins that have found utility in the area of biomaterials and nanotechnology. VLPs have been exploited as containers for the sequestration and encapsulation of a wide range of guest molecules in their hollow interiors. The robust nature of VLPs lend them as versatile scaffolds that can be exploited to provide protection to encapsulated guest molecules, such as enzymes which are often susceptible to inactivation and degradation, and for organization and construction of new nanomaterials incorporating the chemical properties of the guest molecules. In this chapter a background and methodology for the encapsulation of enzymes on the interior of the bacteriophage P22 derived VLP is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sutter M, Boehringer D, Gutmann S et al (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 15(9):939–947

    Article  CAS  PubMed  Google Scholar 

  2. Bode SA, Minten IJ, Nolte RJ et al (2011) Reactions inside nanoscale protein cages. Nanoscale 3(6):2376–2389

    Article  CAS  PubMed  Google Scholar 

  3. Corchero JL, Cedano J (2011) Self-assembling, protein-based intracellular bacterial organelles: emerging vehicles for encapsulating, targeting and delivering therapeutical cargoes. Microb Cell Factories 10(1):92

    Article  CAS  Google Scholar 

  4. Giessen TW (2016) Encapsulins: microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science. Curr Opin Chem Biol 34:1–10

    Article  CAS  PubMed  Google Scholar 

  5. Uchida M, Klem MT, Allen M et al (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19(8):1025–1042

    Article  CAS  Google Scholar 

  6. Flenniken M, Uchida M, Liepold L et al (2009) A library of protein cage architectures as nanomaterials. Curr Top Microbiol Immunol 327:71–93

    PubMed  CAS  Google Scholar 

  7. Pushko P, Pumpens P, Grens E (2013) Development of virus-like particle technology from small highly symmetric to large complex virus-like particle structures. Intervirology 56(3):141–165

    Article  CAS  PubMed  Google Scholar 

  8. Smith MT, Hawes AK, Bundy BC (2013) Reengineering viruses and virus-like particles through chemical functionalization strategies. Curr Opin Biotechnol 24(4):620–626

    Article  CAS  PubMed  Google Scholar 

  9. Dixit SK, Goicochea NL, Daniel M-C et al (2006) Quantum dot encapsulation in viral capsids. Nano Lett 6(9):1993–1999

    Article  CAS  PubMed  Google Scholar 

  10. Rother M, Nussbaumer MG, Renggli K et al (2016) Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 45(22):6213–6249

    Article  CAS  PubMed  Google Scholar 

  11. Ma Y, Nolte RJ, Cornelissen JJ (2012) Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev 64(9):811–825

    Article  CAS  PubMed  Google Scholar 

  12. Maity B, Fujita K, Ueno T (2015) Use of the confined spaces of apo-ferritin and virus capsids as nanoreactors for catalytic reactions. Curr Opin Chem Biol 25:88–97

    Article  CAS  PubMed  Google Scholar 

  13. Cormode DP, Jarzyna PA, Mulder WJ et al (2010) Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev 62(3):329–338

    Article  CAS  PubMed  Google Scholar 

  14. Aniagyei SE, DuFort C, Kao CC et al (2008) Self-assembly approaches to nanomaterial encapsulation in viral protein cages. J Mater Chem 18(32):3763–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Al-Barwani F, Donaldson B, Pelham SJ et al (2014) Antigen delivery by virus-like particles for immunotherapeutic vaccination. Ther Deliv 5(11):1223–1240

    Article  CAS  PubMed  Google Scholar 

  16. Frietze KM, Peabody DS, Chackerian B (2016) Engineering virus-like particles as vaccine platforms. Curr Opin Virol 18:44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Minten IJ, Claessen VI, Blank K et al (2011) Catalytic capsids: the art of confinement. Chem Sci 2(2):358–362

    Article  CAS  Google Scholar 

  18. Comellas-Aragonès M, Engelkamp H, Claessen VI et al (2007) A virus-based single-enzyme nanoreactor. Nat Nanotechnol 2(10):635–639

    Article  CAS  PubMed  Google Scholar 

  19. Minten IJ, Hendriks LJ, Nolte RJ et al (2009) Controlled encapsulation of multiple proteins in virus capsids. J Am Chem Soc 131(49):17771–17773

    Article  CAS  PubMed  Google Scholar 

  20. Fiedler JD, Brown SD, Lau JL et al (2010) RNA-directed packaging of enzymes within virus-like particles. Angew Chem Int Ed 49(50):9648–9651

    Article  CAS  Google Scholar 

  21. Inoue T, M-a K, Takahashi R-u et al (2008) Engineering of SV40-based nano-capsules for delivery of heterologous proteins as fusions with the minor capsid proteins VP2/3. J Biotechnol 134(1):181–192

    Article  CAS  PubMed  Google Scholar 

  22. Patterson DP, Prevelige PE, Douglas T (2012) Nanoreactors by programmed enzyme encapsulation inside the capsid of the bacteriophage P22. ACS Nano 6(6):5000–5009

    Article  CAS  PubMed  Google Scholar 

  23. Botstein D, Waddell CH, King J (1973) Mechanism of head assembly and DNA encapsulation in salmonella phage P22: I. Genes, proteins, structures and DNA maturation. J Mol Biol 80(4):697–731

    Article  PubMed  Google Scholar 

  24. Teschke CM, McGough A, Thuman-Commike PA (2003) Penton release from P22 heat-expanded capsids suggests importance of stabilizing penton-hexon interactions during capsid maturation. Biophys J 84(4):2585–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kang S, Uchida M, O’Neil A et al (2010) Implementation of p22 viral capsids as nanoplatforms. Biomacromolecules 11(10):2804–2809

    Article  CAS  PubMed  Google Scholar 

  26. Parent KN, Khayat R, Tu LH et al (2010) P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks. Structure 18(3):390–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Casjens S, Adams M, Hall C et al (1985) Assembly-controlled autogenous modulation of bacteriophage P22 scaffolding protein gene expression. J Virol 53(1):174–179

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Schwarz B, Madden P, Avera J et al (2015) Symmetry controlled, genetic presentation of bioactive proteins on the P22 virus-like particle using an external decoration protein. ACS Nano 9(9):9134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parker MH, Casjens S, Prevelige PE (1998) Functional domains of bacteriophage P22 scaffolding protein. J Mol Biol 281(1):69–79

    Article  CAS  PubMed  Google Scholar 

  30. Weigele PR, Sampson L, Winn-Stapley D et al (2005) Molecular genetics of bacteriophage P22 scaffolding protein’s functional domains. J Mol Biol 348(4):831–844

    Article  CAS  PubMed  Google Scholar 

  31. Patterson DP, Schwarz B, Waters RS et al (2013) Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle. ACS Chem Biol 9(2):359–365

    Article  CAS  PubMed  Google Scholar 

  32. Patterson DP, Schwarz B, El-Boubbou K et al (2012) Virus-like particle nanoreactors: programmed encapsulation of the thermostable CelB glycosidase inside the P22 capsid. Soft Matter 8(39):10158–10166

    Article  CAS  Google Scholar 

  33. Patterson DP, Rynda-Apple A, Harmsen AL et al (2013) Biomimetic antigenic nanoparticles elicit controlled protective immune response to influenza. ACS Nano 7(4):3036–3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jordan PC, Patterson DP, Saboda KN et al (2015) Self-assembling biomolecular catalysts for hydrogen production. Nat Chem 8(2):179–185

    Article  CAS  PubMed  Google Scholar 

  35. Patterson DP, LaFrance B, Douglas T (2013) Rescuing recombinant proteins by sequestration into the P22 VLP. Chem Commun 49(88):10412–10414

    Article  CAS  Google Scholar 

  36. Patterson DP, McCoy K, Fijen C et al (2014) Constructing catalytic antimicrobial nanoparticles by encapsulation of hydrogen peroxide producing enzyme inside the P22 VLP. J Mater Chem B 2(36):5948–5951

    Article  CAS  Google Scholar 

  37. O’Neil A, Prevelige PE, Basu G et al (2012) Coconfinement of fluorescent proteins: spatially enforced communication of GFP and mCherry encapsulated within the P22 capsid. Biomacromolecules 13(12):3902–3907

    Article  CAS  PubMed  Google Scholar 

  38. O’Neil A, Prevelige PE, Douglas T (2013) Stabilizing viral nano-reactors for nerve-agent degradation. Biomater Sci 1(8):881–886

    Article  CAS  Google Scholar 

  39. Qazi S, Miettinen HM, Wilkinson RA et al (2016) Programmed self-assembly of an active P22-Cas9 nanocarrier system. Mol Pharm 13(3):1191–1196

    Article  CAS  PubMed  Google Scholar 

  40. Sánchez-Sánchez L, Tapia-Moreno A, Juarez-Moreno K et al (2015) Design of a VLP-nanovehicle for CYP450 enzymatic activity delivery. J Nanobiotechnol 13(1):66

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin P. Patterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Patterson, D.P. (2018). Encapsulation of Active Enzymes within Bacteriophage P22 Virus-Like Particles. In: Udit, A. (eds) Protein Scaffolds. Methods in Molecular Biology, vol 1798. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7893-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7893-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7892-2

  • Online ISBN: 978-1-4939-7893-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics