Skip to main content

Novel Methods for Family-Based Genetic Studies

  • Protocol
  • First Online:
Genetic Epidemiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1793))

  • 3832 Accesses

Abstract

The recent development of microarray and sequencing technology allows identification of disease susceptibility genes. Although the genome-wide association studies (GWAS) have successfully identified many genetic markers related to human diseases, the traditional statistical methods are not powerful to detect rare genetic markers. The rare genetic markers are usually grouped together and tested at the set level. One of such methods is the sequence kernel association test (SKAT), which has been commonly used in the rare genetic marker analysis. In recent publications, SKAT has been extended to be applicable for family-based rare variant analysis. Here, I present three published statistical approaches for family-based rare variant analysis for: 1. continuous traits, 2. binary traits, and 3. multiple correlated traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends in Genetics: TIG 24(3):133–141. https://doi.org/10.1016/j.tig.2007.12.007

    Article  PubMed  CAS  Google Scholar 

  2. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11(1):31–46. https://doi.org/10.1038/nrg2626

    Article  PubMed  CAS  Google Scholar 

  3. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678. https://doi.org/10.1038/nature05911

    Article  CAS  Google Scholar 

  4. Hunter DJ, Kraft P, Jacobs KB et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39(7):870–874. https://doi.org/10.1038/ng2075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yeager M, Orr N, Hayes RB et al (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39(5):645–649. https://doi.org/10.1038/ng2022

    Article  PubMed  CAS  Google Scholar 

  6. Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106(23):9362–9367. https://doi.org/10.1073/pnas.0903103106

    Article  PubMed  PubMed Central  Google Scholar 

  7. Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118(5):1590–1605. https://doi.org/10.1172/JCI34772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Schork NJ, Murray SS, Frazer KA et al (2009) Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19(3):212–219. https://doi.org/10.1016/j.gde.2009.04.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83(3):311–321. https://doi.org/10.1016/j.ajhg.2008.06.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Liu JZ, McRae AF, Nyholt DR et al (2010) A versatile gene-based test for genome-wide association studies. Am J Hum Genet 87(1):139–145. https://doi.org/10.1016/j.ajhg.2010.06.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wu MC, Kraft P, Epstein MP et al (2010) Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet 86(6):929–942. https://doi.org/10.1016/j.ajhg.2010.05.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Neale BM, Sham PC (2004) The future of association studies: gene-based analysis and replication. Am J Hum Genet 75(3):353–362. https://doi.org/10.1086/423901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Han F, Pan W (2010) A data-adaptive sum test for disease association with multiple common or rare variants. Hum Hered 70(1):42–54. https://doi.org/10.1159/000288704

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hoffmann TJ, Marini NJ, Witte JS (2010) Comprehensive approach to analyzing rare genetic variants. PLoS One 5(11):e13584. https://doi.org/10.1371/journal.pone.0013584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lin WY, Lou XY, Gao G et al (2014) Rare variant association testing by adaptive combination of P-values. PLoS One 9(1):e85728. https://doi.org/10.1371/journal.pone.0085728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lin WY, Yi N, Lou XY et al (2013) Haplotype kernel association test as a powerful method to identify chromosomal regions harboring uncommon causal variants. Genet Epidemiol 37(6):560–570. https://doi.org/10.1002/gepi.21740

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lin WY, Yi N, Zhi D et al (2012) Haplotype-based methods for detecting uncommon causal variants with common SNPs. Genet Epidemiol 36(6):572–582. https://doi.org/10.1002/gepi.21650

    Article  PubMed  PubMed Central  Google Scholar 

  18. Madsen BE, Browning SR (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5(2):e1000384. https://doi.org/10.1371/journal.pgen.1000384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Morgenthaler S, Thilly WG (2007) A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 615(1–2):28–56. https://doi.org/10.1016/j.mrfmmm.2006.09.003

    Article  PubMed  CAS  Google Scholar 

  20. Zawistowski M, Gopalakrishnan S, Ding J et al (2010) Extending rare-variant testing strategies: analysis of noncoding sequence and imputed genotypes. Am J Hum Genet 87(5):604–617. https://doi.org/10.1016/j.ajhg.2010.10.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yi N, Liu N, Zhi D et al (2011) Hierarchical generalized linear models for multiple groups of rare and common variants: jointly estimating group and individual-variant effects. PLoS Genet 7(12):e1002382. https://doi.org/10.1371/journal.pgen.1002382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wu MC, Lee S, Cai T et al (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89(1):82–93. https://doi.org/10.1016/j.ajhg.2011.05.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yan Q, Tiwari HK, Yi N et al (2014) Kernel-machine testing coupled with a rank-truncation method for genetic pathway analysis. Genet Epidemiol 38(5):447–456. https://doi.org/10.1002/gepi.21813

    Article  PubMed  PubMed Central  Google Scholar 

  24. Falk CT, Rubinstein P (1987) Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann Hum Genet 51(Pt 3):227–233

    Article  CAS  PubMed  Google Scholar 

  25. Ott J (1989) Statistical properties of the haplotype relative risk. Genet Epidemiol 6(1):127–130. https://doi.org/10.1002/gepi.1370060124

    Article  PubMed  CAS  Google Scholar 

  26. Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52(3):506–516

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Terwilliger JD, Ott J (1992) A haplotype-based 'haplotype relative risk' approach to detecting allelic associations. Hum Hered 42(6):337–346

    Article  CAS  PubMed  Google Scholar 

  28. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62(5):1198–1211. https://doi.org/10.1086/301844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Rabinowitz D, Laird N (2000) A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Human heredity 50(4):211–223. doi:22918

    Article  CAS  PubMed  Google Scholar 

  30. Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208. https://doi.org/10.1038/ng1702

    Article  PubMed  CAS  Google Scholar 

  31. Kang HM, Sul JH, Service SK et al (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42(4):348–354. https://doi.org/10.1038/ng.548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang Z, Ersoz E, Lai CQ et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42(4):355–360. https://doi.org/10.1038/ng.546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen H, Meigs JB, Dupuis J (2013) Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol 37(2):196–204. https://doi.org/10.1002/gepi.21703

    Article  PubMed  Google Scholar 

  34. Schifano ED, Epstein MP, Bielak LF et al (2012) SNP set association analysis for familial data. Genet Epidemiol 36:797–810. https://doi.org/10.1002/gepi.21676

    Article  PubMed  PubMed Central  Google Scholar 

  35. Oualkacha K, Dastani Z, Li R et al (2013) Adjusted sequence kernel association test for rare variants controlling for cryptic and family relatedness. Genet Epidemiol 37(4):366–376. https://doi.org/10.1002/gepi.21725

    Article  PubMed  Google Scholar 

  36. Yuan KH, Bentler PM (2010) Two simple approximations to the distributions of quadratic forms. Br J Math Stat Psychol 63(Pt 2):273–291. https://doi.org/10.1348/000711009X449771

    Article  PubMed  Google Scholar 

  37. Davies R (1980) The distribution of a linear combination of chi-square random variables. J R Stat Soc Ser C Appl Stat 29:323–333

    Google Scholar 

  38. Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Amer Statist Assoc 88:9–25

    Google Scholar 

  39. Venables WN, Ripley BD, Venables WN (2002) Modern applied statistics with S. Statistics and computing, 4th edn. Springer, New York

    Book  Google Scholar 

  40. Yan Q, Tiwari HK, Yi N et al (2015) A sequence kernel association test for dichotomous traits in family samples under a generalized linear mixed model. Hum Hered 79(2):60–68. https://doi.org/10.1159/000375409

    Article  PubMed  Google Scholar 

  41. Nelder JA, Mead R (1965) A simplex-method for function minimization. Comput J 7(4):308–313

    Article  Google Scholar 

  42. Broyden CG (1969) A new double-rank minimisation algorithm. Preliminary report. Not Am Math Soc 16(4):670

    Google Scholar 

  43. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317. https://doi.org/10.1093/comjnl/13.3.317

    Article  Google Scholar 

  44. Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comput 24(109):23. https://doi.org/10.2307/2004873

    Article  Google Scholar 

  45. Shanno DF (1970) Conditioning of quasi-newton methods for function minimization. Math Comput 24(111):647. https://doi.org/10.2307/2004840

    Article  Google Scholar 

  46. Yan Q, Weeks DE, Celedon JC et al (2015) Associating multivariate quantitative phenotypes with genetic variants in family samples with a novel kernel machine regression method. Genetics 201(4):1329–1339. https://doi.org/10.1534/genetics.115.178590

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yan, Q. (2018). Novel Methods for Family-Based Genetic Studies. In: Evangelou, E. (eds) Genetic Epidemiology. Methods in Molecular Biology, vol 1793. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7868-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7868-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7867-0

  • Online ISBN: 978-1-4939-7868-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics