Skip to main content

Meta-Analysis of Common and Rare Variants

  • Protocol
  • First Online:
Genetic Epidemiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1793))

Abstract

Meta-analysis is a statistical technique that is widely used for improving the power to detect associations, by synthesizing data from independent studies, and is extensively used in the genomic analyses of complex traits. Estimates from different studies are combined and the results effectively provide the power of a much larger study. Meta-analysis also has the potential of discovering heterogeneity in the effects among the different studies. This chapter provides an overview of the methods used for meta-analysis of common and rare single variants and also for gene/region-based analyses; common variants are mainly identified via genome-wide association studies (GWAS) and rare variants through various types of sequencing experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeggini E, Ioannidis JP (2009) Meta-analysis in genome-wide association studies. Pharmacogenomics 10(2):191–201. https://doi.org/10.2217/14622416.10.2.191

    Article  PubMed  Google Scholar 

  2. Evangelou E, Ioannidis JP (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14(6):379–389. https://doi.org/10.1038/nrg3472

    Article  PubMed  CAS  Google Scholar 

  3. Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363(2):166–176. https://doi.org/10.1056/NEJMra0905980

    Article  PubMed  CAS  Google Scholar 

  4. Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299(11):1335–1344. https://doi.org/10.1001/jama.299.11.1335

    Article  PubMed  CAS  Google Scholar 

  5. International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437(7063):1299–1320. https://doi.org/10.1038/nature04226

    Article  CAS  Google Scholar 

  6. 1000 Genomes Project Concortium, Auton A, Brooks LD et al (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48(10):1279–1283. https://doi.org/10.1038/ng.3643

    Article  CAS  Google Scholar 

  7. Haplotype Reference, C (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48:1279

    Google Scholar 

  8. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90(1):7–24. https://doi.org/10.1016/j.ajhg.2011.11.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Welter D, MacArthur J, Morales J et al (2014) The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42(Database issue):D1001–D1006. https://doi.org/10.1093/nar/gkt1229

    Article  PubMed  CAS  Google Scholar 

  10. Do R, Kathiresan S, Abecasis GR (2012) Exome sequencing and complex disease: practical aspects of rare variant association studies. Hum Mol Genet 21(R1):R1–R9. https://doi.org/10.1093/hmg/dds387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lee S, Abecasis GR, Boehnke M et al (2014) Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet 95(1):5–23. https://doi.org/10.1016/j.ajhg.2014.06.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ansorge WJ (2009) Next-generation DNA sequencing techniques. New Biotechnol 25(4):195–203. https://doi.org/10.1016/j.nbt.2008.12.009

    Article  CAS  Google Scholar 

  13. Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909. https://doi.org/10.1038/ng1847

    Article  PubMed  CAS  Google Scholar 

  14. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55(4):997–1004

    Article  CAS  PubMed  Google Scholar 

  15. de Bakker PI, Ferreira MA, Jia X et al (2008) Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet 17(R2):R122–R128. https://doi.org/10.1093/hmg/ddn288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5(6):e1000529. https://doi.org/10.1371/journal.pgen.1000529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Howie B, Fuchsberger C, Stephens M et al (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 44(8):955–959. https://doi.org/10.1038/ng.2354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84(2):210–223. https://doi.org/10.1016/j.ajhg.2009.01.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lin DY, Zeng D (2010) Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data. Genet Epidemiol 34(1):60–66. https://doi.org/10.1002/gepi.20435

    Article  PubMed  CAS  Google Scholar 

  20. Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10:101–129

    Article  Google Scholar 

  21. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    PubMed  CAS  Google Scholar 

  22. Borenstein M, Hedges LV, Higgins JP et al (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1(2):97–111. https://doi.org/10.1002/jrsm.12

    Article  PubMed  Google Scholar 

  23. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  24. Hardy RJ, Thompson SG (1996) A likelihood approach to meta-analysis with random effects. Stat Med 15:619–629

    Article  CAS  PubMed  Google Scholar 

  25. Han B, Eskin E (2011) Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 88(5):586–598. https://doi.org/10.1016/j.ajhg.2011.04.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Han B, Eskin E (2012) Interpreting meta-analyses of genome-wide association studies. PLoS Genet 8(3):e1002555. https://doi.org/10.1371/journal.pgen.1002555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Shi J, Lee S (2016) A novel random effect model for GWAS meta-analysis and its application to trans-ethnic meta-analysis. Biometrics 72(3):945–954. https://doi.org/10.1111/biom.12481

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fisher RA (1925) Statistical methods for research workers. Oliver and Boyd, Edinburgh

    Google Scholar 

  29. Stouffer SA (1949) Adjustment during army life. Princeton University Press, Princeton, NJ

    Google Scholar 

  30. Stephens M, Balding DJ (2009) Bayesian statistical methods for genetic association studies. Nat Rev Genet 10(10):681–690. https://doi.org/10.1038/nrg2615

    Article  PubMed  CAS  Google Scholar 

  31. Morris AP (2011) Transethnic meta-analysis of genomewide association studies. Genet Epidemiol 35(8):809–822. https://doi.org/10.1002/gepi.20630

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lek M, Karczewski KJ, Minikel EV et al (2016) The OncoArray consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol Biomark Prev 26:126. https://doi.org/10.1158/1055-9965.EPI-16-0106

    Article  Google Scholar 

  33. Amos CI, Dennis J et al (2017) The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers. Cancer Epidemiol Biomark Prev 26(1):126–135

    Google Scholar 

  34. Lin DY, Tang ZZ (2011) A general framework for detecting disease associations with rare variants in sequencing studies. Am J Hum Genet 89(3):354–367. https://doi.org/10.1016/j.ajhg.2011.07.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. https://doi.org/10.1093/nar/gkq603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Morgenthaler S, Thilly WG (2007) A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 615(1–2):28–56. https://doi.org/10.1016/j.mrfmmm.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  37. Morris AP, Zeggini E (2010) An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol 34(2):188–193. https://doi.org/10.1002/gepi.20450

    Article  PubMed  Google Scholar 

  38. Madsen BE, Browning SR (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5(2):e1000384. https://doi.org/10.1371/journal.pgen.1000384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83(3):311–321. https://doi.org/10.1016/j.ajhg.2008.06.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Price AL, Kryukov GV, de Bakker PI et al (2010) Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86(6):832–838. https://doi.org/10.1016/j.ajhg.2010.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu MC, Lee S, Cai T et al (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89(1):82–93. https://doi.org/10.1016/j.ajhg.2011.05.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Neale BM, Rivas MA, Voight BF et al (2011) Testing for an unusual distribution of rare variants. PLoS Genet 7(3):e1001322. https://doi.org/10.1371/journal.pgen.1001322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lee S, Wu MC, Lin X (2012) Optimal tests for rare variant effects in sequencing association studies. Biostatistics 13(4):762–775. https://doi.org/10.1093/biostatistics/kxs014

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu DJ, Peloso GM, Zhan X et al (2014) Meta-analysis of gene-level tests for rare variant association. Nat Genet 46(2):200–204. https://doi.org/10.1038/ng.2852

    Article  PubMed  CAS  Google Scholar 

  45. Lumley T, Brody J, Dupuis J, Cupples A (2013) Meta-analysis of a rare variant association test. http://stattech.wordpress.fos.auckland.ac.nz/files/2012/11/skat-meta-paper.pdf

  46. Tang ZZ, Lin DY (2015) Meta-analysis for discovering rare-variant associations: statistical methods and software programs. Am J Hum Genet 97(1):35–53. https://doi.org/10.1016/j.ajhg.2015.05.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lee S, Teslovich TM, Boehnke M et al (2013) General framework for meta-analysis of rare variants in sequencing association studies. Am J Hum Genet 93(1):42–53. https://doi.org/10.1016/j.ajhg.2013.05.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Voorman A, Brody J, Chen H, Lumley T, Davis B (2017) seqMeta: Meta-analysis of region-based tests of rare DNA variants. R package version 1.6.7. https://CRAN.R-project.org/package=seqMeta

  49. Hu YJ, Berndt SI, Gustafsson S et al (2013) Meta-analysis of gene-level associations for rare variants based on single-variant statistics. Am J Hum Genet 93(2):236–248. https://doi.org/10.1016/j.ajhg.2013.06.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tang ZZ, Lin DY (2013) MASS: meta-analysis of score statistics for sequencing studies. Bioinformatics 29(14):1803–1805. https://doi.org/10.1093/bioinformatics/btt280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tang ZZ, Lin DY (2014) Meta-analysis of sequencing studies with heterogeneous genetic associations. Genet Epidemiol 38(5):389–401. https://doi.org/10.1002/gepi.21798

    Article  PubMed  PubMed Central  Google Scholar 

  52. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  53. Nelson MR, Wegmann D, Ehm MG et al (2012) An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337(6090):100–104. https://doi.org/10.1126/science.1217876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26(17):2190–2191. https://doi.org/10.1093/bioinformatics/btq340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Liu JZ, Tozzi F, Waterworth DM et al (2010) Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 42(5):436–440. https://doi.org/10.1038/ng.572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Magi R, Morris AP (2010) GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11:288. https://doi.org/10.1186/1471-2105-11-288

    Article  PubMed  PubMed Central  Google Scholar 

  57. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. https://doi.org/10.1086/519795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  59. Aulchenko YS, Ripke S, Isaacs A et al (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23(10):1294–1296. https://doi.org/10.1093/bioinformatics/btm108

    Article  PubMed  CAS  Google Scholar 

  60. Feng S, Liu D, Zhan X et al (2014) RAREMETAL: fast and powerful meta-analysis for rare variants. Bioinformatics 30(19):2828–2829. https://doi.org/10.1093/bioinformatics/btu367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriaki Michailidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Michailidou, K. (2018). Meta-Analysis of Common and Rare Variants. In: Evangelou, E. (eds) Genetic Epidemiology. Methods in Molecular Biology, vol 1793. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7868-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7868-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7867-0

  • Online ISBN: 978-1-4939-7868-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics