Skip to main content

Lipidomics Profiling of Myelin

  • Protocol
Myelin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1791))

Abstract

Lipidomics is a powerful approach that can provide quantitative characterization of hundreds of lipid species from biological samples. Recent studies have highlighted the value of lipidomics to study myelin biology. This chapter provides a detailed description for the application of multidimensional mass spectrometry shotgun lipidomics (MDMS-SL) to neuroscience research and particularly to the analysis of brain lipidomes with a particular emphasis on myelin lipids, from sample preparation to bioinformatics analyses. Sample preparation includes brain sample harvesting, homogenization, and lipid extraction. Lipid content is determined and quantified, in an unbiased manner and with wide coverage, using MDMS-SL. Overall, the approach described herein is applicable for whole brain tissue or specific brain regions (e.g., hippocampus, cerebellum), and is expected to yield new insights on various aspects of myelin biology and lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124. https://doi.org/10.1038/nrm2330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079. https://doi.org/10.1194/jlr.R300004-JLR200

    Article  PubMed  CAS  Google Scholar 

  3. Lagarde M, Geloen A, Record M, Vance D, Spener F (2003) Lipidomics is emerging. Biochim Biophys Acta 1634(3):61

    Article  CAS  PubMed  Google Scholar 

  4. Han X, Gross RW (2001) Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 295(1):88–100. https://doi.org/10.1006/abio.2001.5178

    Article  PubMed  CAS  Google Scholar 

  5. Han X, Gross RW (2005) Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev Proteomics 2(2):253–264. https://doi.org/10.1586/14789450.2.2.253

    Article  PubMed  CAS  Google Scholar 

  6. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24(3):367–412. https://doi.org/10.1002/mas.20023

    Article  PubMed  CAS  Google Scholar 

  7. Han X, Yang J, Cheng H, Ye H, Gross RW (2004) Toward fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Anal Biochem 330(2):317–331. https://doi.org/10.1016/j.ab.2004.04.004

  8. Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31(1):134–178. https://doi.org/10.1002/mas.20342

    Article  PubMed  CAS  Google Scholar 

  9. Yang K, Cheng H, Gross RW, Han X (2009) Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal Chem 81(11):4356–4368. https://doi.org/10.1021/ac900241u

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cheng H, Zhou Y, Holtzman DM, Han X (2010) Apolipoprotein E mediates sulfatide depletion in animal models of Alzheimer's disease. Neurobiol Aging 31(7):1188–1196. https://doi.org/10.1016/j.neurobiolaging.2008.07.020

    Article  PubMed  CAS  Google Scholar 

  11. Han X (2010) Multi-dimensional mass spectrometry-based shotgun lipidomics and the altered lipids at the mild cognitive impairment stage of Alzheimer's disease. Biochim Biophys Acta 1801(8):774–783. https://doi.org/10.1016/j.bbalip.2010.01.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Han X (2010) The pathogenic implication of abnormal interaction between apolipoprotein E isoforms, amyloid-beta peptides, and sulfatides in Alzheimer's disease. Mol Neurobiol 41(2–3):97–106. https://doi.org/10.1007/s12035-009-8092-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cheng H, Jiang X, Han X (2007) Alterations in lipid homeostasis of mouse dorsal root ganglia induced by apolipoprotein E deficiency: a shotgun lipidomics study. J Neurochem 101(1):57–76. https://doi.org/10.1111/j.1471-4159.2006.04342.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jiang X, Cheng H, Yang K, Gross RW, Han X (2007) Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low-abundance regime of cellular sphingolipids. Anal Biochem 371(2):135–145. https://doi.org/10.1016/j.ab.2007.08.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zeng Y, Cheng H, Jiang X, Han X (2008) Endosomes and lysosomes play distinct roles in sulfatide-induced neuroblastoma apoptosis: potential mechanisms contributing to abnormal sulfatide metabolism in related neuronal diseases. Biochem J 410(1):81–92. https://doi.org/10.1042/BJ20070976

    Article  PubMed  CAS  Google Scholar 

  16. Yang K, Zhao Z, Gross RW, Han X (2007) Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species. PLoS One 2(12):e1368. https://doi.org/10.1371/journal.pone.0001368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Elliott DA, Weickert CS, Garner B (2010) Apolipoproteins in the brain: implications for neurological and psychiatric disorders. Clin Lipidol 51(4):555–573. https://doi.org/10.2217/CLP.10.37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Han X (2007) Neurolipidomics: challenges and developments. Front Biosci 12:2601–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Piomelli D, Astarita G, Rapaka R (2007) A neuroscientist's guide to lipidomics. Nat Rev Neurosci 8(10):743–754. https://doi.org/10.1038/nrn2233

    Article  PubMed  CAS  Google Scholar 

  20. Morell P, Quarles RH (1999) Characteristic composition of myelin. In: Siegel GJ, Agranoff BW, Albers RW et al (eds) Basic neurochemistry: molecular, cellular and medical aspects. Lippincott-Raven, Philadelphia, PA

    Google Scholar 

  21. Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 21(4):759–773

    Article  CAS  PubMed  Google Scholar 

  22. Han X, Holtzman DM, McKeel DW Jr (2001) Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 77(4):1168–1180

    Article  CAS  PubMed  Google Scholar 

  23. Yang K, Fang X, Gross RW, Han X (2011) A practical approach for determination of mass spectral baselines. J Am Soc Mass Spectrom 22(11):2090–2099. https://doi.org/10.1007/s13361-011-0229-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Han X (2016) Lipidomics for studying metabolism. Nat Rev Endocrinol 12(11):668–679. https://doi.org/10.1038/nrendo.2016.98

    Article  PubMed  CAS  Google Scholar 

  25. Han X, Yang K, Yang J, Cheng H, Gross RW (2006) Shotgun lipidomics of cardiolipin molecular species in lipid extracts of biological samples. J Lipid Res 47(4):864–879. https://doi.org/10.1194/jlr.D500044-JLR200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Institute of General Medical Sciences Grant R01 GM105724, the American Diabetes Association Grant #7-15-MI-07, and intramural institutional research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianlin Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Wang, C., Pablo Palavicini, J., Han, X. (2018). Lipidomics Profiling of Myelin. In: Woodhoo, A. (eds) Myelin. Methods in Molecular Biology, vol 1791. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7862-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7862-5_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7861-8

  • Online ISBN: 978-1-4939-7862-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics