Skip to main content

Detection of CRISPR/Cas9-Induced Genomic Fragment Deletions in Barley and Generation of Homozygous Edited Lines via Embryogenic Pollen Culture

  • Protocol
  • First Online:
Book cover Plant Vacuolar Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1789))

Abstract

The CRISPR/Cas9 system from Streptococcus pyogenes is an increasingly popular tool for genome editing due to its ease of application. Here we demonstrate genomic DNA fragment removal using RNA directed Cas9 nuclease in barley. The high mutation frequency confirms the exceptional efficiency of the system and its suitability for generating loss-of-function mutant lines that may be used in functional genetics approaches to study endomembrane trafficking pathways and posttranslational protein modifications. The generation of doubled haploids from genome edited plants allows the recovery of true breeding lines that are instantly homozygous for the edited alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchholz F (2009) Engineering DNA processing enzymes for the postgenomic era. Curr Opin Biotechnol 20(4):383–389

    Article  CAS  PubMed  Google Scholar 

  2. Hilscher J, Burstmayr H, Stoger E (2017) Targeted modification of plant genomes for precision crop breeding. Biotechnol J 12(1). https://doi.org/10.1002/biot.201600173

    Article  CAS  Google Scholar 

  3. Bortesi L, Zhu C, Zischewski J, Perez L, Bassié L, Nadi R, Forni G, Lade SB, Soto E, Jin X, Medina V, Villorbina G, Muñoz P, Farré G, Fischer R, Twyman RM, Capell T, Christou P, Schillberg S (2016) Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J 14:2203–2216. https://doi.org/10.1111/pbi.12634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pacher M, Puchta H (2016) From classical mutagenesis to nuclease-based breeding–directing natural DNA repair for a natural end-product. Plant J. https://doi.org/10.1111/tpj.13469

  5. Vuylsteker C, Cuvellier G, Berger S, Faugeron C, Karamanos Y (2000) Evidence of two enzymes performing the de-N-glycosylation of proteins in barley: expression during germination, localization within the grain and set-up during grain formation. J Exp Bot 51:839–845

    Article  CAS  PubMed  Google Scholar 

  6. Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F, Kunert R, Fischer R, Stoger E (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J 6:189–201. https://doi.org/10.1111/j.1467-7652.2007.00306.x

    Article  PubMed  CAS  Google Scholar 

  7. Hensel G, Floss DM, Arcalis E, Sack M, Melnik S, Altmann F, Rutten T, Kumlehn J, Stoger E, Conrad U (2015) Transgenic production of an anti HIV antibody in the barley endosperm. PLoS One 10:e0140476. https://doi.org/10.1371/journal.pone.0140476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kapusi E, Corcuera-Gómez M, Melnik S, Stoger E (2017) Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front Plant Sci 8:540. https://doi.org/10.3389/fpls.2017.00540

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kapusi E, Hensel G, Coronado MJ, Broeders S, Marthe C, Otto I, Kumlehn J (2013) The elimination of a selectable marker gene in the doubled haploid progeny of co-transformed barley plants. Plant Mol Biol 81:149–160. https://doi.org/10.1007/s11103-012-9988-9

    Article  PubMed  CAS  Google Scholar 

  10. Tingay S, McElroy D, Kalla R, Feig S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediatedbarley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  11. Hensel G, Kumlehn J (2004) Genetic transformation of barley (Hordeum vulgare L.) by co-culture of immature embryos with Agrobacteria. In: Curtis IS (ed) Transgenic corps of the world – essential protocols. Kluwer, Dordrecht, pp 35–44

    Chapter  Google Scholar 

  12. Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144:732–743

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84

    Article  CAS  PubMed  Google Scholar 

  14. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188. https://doi.org/10.1093/nar/gkt780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent arabidopsis genomic library in agrobacterium. Biotechnology (N Y) 9(10):963–967

    Article  CAS  Google Scholar 

  16. Pallotta MA, Graham RD, Langridge P, Sparrow DHB, Barker SJ (2000) RFLP mapping of manganese efficiency in barley. Theor Appl Genet 101:1100–1108

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Stanislav Melnik for sequence analysis and Maria Corcuera-Gómez for technical assistance. This work was supported by the Austrian Research Fund FWF (I1461-B16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Stöger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kapusi, E., Stöger, E. (2018). Detection of CRISPR/Cas9-Induced Genomic Fragment Deletions in Barley and Generation of Homozygous Edited Lines via Embryogenic Pollen Culture. In: Pereira, C. (eds) Plant Vacuolar Trafficking. Methods in Molecular Biology, vol 1789. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7856-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7856-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7855-7

  • Online ISBN: 978-1-4939-7856-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics