Skip to main content

High Throughput Sequencing-Based Approaches for Gene Expression Analysis

  • Protocol
  • First Online:
Gene Expression Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1783))

Abstract

Next-generation sequencing has emerged as the method of choice to answer fundamental questions in biology. The massively parallel sequencing technology for RNA-Seq analysis enables better understanding of gene expression patterns in model and nonmodel organisms. Sequencing per se has reached the stage of commodity level while analyzing and interpreting huge amount of data has been a significant challenge. This chapter is aimed at discussing the complexities involved in sequencing and analysis, and tries to simplify sequencing based gene expression analysis. Biologists and experimental scientists were kept in mind while discussing the methods and analysis workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  2. Buermans HPJ, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta BBA 1842:1932–1941

    Article  CAS  PubMed  Google Scholar 

  3. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis E (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mutz K-O, Heilkenbrinker A, Lönne M, Walter J-G, Stahl F (2013) Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 24:22–30

    Article  CAS  PubMed  Google Scholar 

  5. Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto Calif) 6:287–303

    Article  CAS  Google Scholar 

  6. Manga P et al (2016) Replicates, read numbers, and other important experimental design considerations for microbial RNA-seq identified using Bacillus thuringiensis datasets. Front Microbiol 7:794

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schurch NJ et al (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22:839–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosenbloom KR et al (2013) ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res 41:D56–D63

    Article  CAS  PubMed  Google Scholar 

  9. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15:121–132

    Article  CAS  PubMed  Google Scholar 

  10. Conesa A et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Afgan E et al (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44:W3–W10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    Article  CAS  PubMed  Google Scholar 

  13. Field D et al (2006) Open software for biologists: from famine to feast. Nat Biotechnol 24:801–803

    Article  CAS  PubMed  Google Scholar 

  14. Andrews, S. FastQC A Quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed: 29th June 2016

    Google Scholar 

  15. Babraham Bioinformatics - Trim Galore! Available at: http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. Accessed: 30th January 2017

    Google Scholar 

  16. Bahl A et al (2003) PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res 31:212–215

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okonechnikov K, Conesa A, García-Alcalde F (2016) Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32:292–294

    PubMed  CAS  Google Scholar 

  19. Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I (2016) The impact of amplification on differential expression analyses by RNA-seq. Sci Rep 6:25533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Picard Tools - By Broad Institute. Available at: http://broadinstitute.github.io/picard/. Accessed: 31st January 2017

    Google Scholar 

  21. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P (2015) Sambamba: fast processing of NGS alignment formats. Bioinformatics 31:2032–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  CAS  PubMed  Google Scholar 

  23. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  24. Pertea M et al (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:1–12

    Article  CAS  Google Scholar 

  26. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  27. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  28. Grabherr MG et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xie Y et al (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30:1660–1666

    Article  CAS  PubMed  Google Scholar 

  30. Liu J et al (2016) BinPacker: packing-based de novo transcriptome assembly from RNA-seq data. PLoS Comput Biol 12:e1004772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clarke K, Yang Y, Marsh R, Xie L, Zhang KK (2013) Comparative analysis of de novo transcriptome assembly. Sci China Life Sci 56:156–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Durai DA, Schulz MH (2016) Informed kmer selection for de novo transcriptome assembly. Bioinformatics 32:1670–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S (2016) TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res 26:1134–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579

    Article  CAS  PubMed  Google Scholar 

  35. Conesa A et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reddy, R.R.S., Ramanujam, M.V. (2018). High Throughput Sequencing-Based Approaches for Gene Expression Analysis. In: Raghavachari, N., Garcia-Reyero, N. (eds) Gene Expression Analysis. Methods in Molecular Biology, vol 1783. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7834-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7834-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7833-5

  • Online ISBN: 978-1-4939-7834-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics