Skip to main content

Disease Modification Through Trophic Factor Delivery

  • Protocol
  • First Online:
Huntington’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1780))

Abstract

Huntington’s disease (HD) is characterized by a significant loss of striatal neurons that project to the globus pallidus and substantia nigra, together with loss of cortical projection neurons in varying regions. Mutant huntingtin is suggested to drive the pathogenesis partially by downregulating corticostriatal brain-derived neurotrophic factor (BDNF) levels and signaling. Neurotrophic factors are endogenous peptides that promote the survival and maintenance of neurons. BDNF and other neurotrophic factors have shown neuroprotective benefits in various animal models of neurodegeneration, and are interesting candidates to protect the cell populations that are destined to die in HD. In an attempt to enhance the delivery of neurotrophic factors, several methods have been established to deliver long-term neurotrophic factor gene therapy to human target tissues. This chapter discusses two alternative approaches that have been shown to have potential to deliver neurotrophic factors as a neuroprotective gene therapy for HD. The methods are (1) ex vivo approach where encapsulated cells engineered to express neurotrophic factor are inserted into brain parenchyma or ventricle, and (2) in vivo viral vector therapy, in which viral vector is injected into desired brain area to express gene of interest in the host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubinsztein DC, Leggo J, Coles R et al (1996) Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36–39 repeats. Am J Hum Genet 59:16–22

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  PubMed  CAS  Google Scholar 

  3. Glass M, Dragunow M, Faull RL (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97:505–519

    Article  CAS  PubMed  Google Scholar 

  4. Han I, You Y, Kordower JH et al (2010) Differential vulnerability of neurons in Huntington’s disease: the role of cell type-specific features. J Neurochem 113:1073–1091

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Tippett LJ, Waldvogel HJ, Thomas S et al (2007) Striosomes and mood dysfunction in Huntington’s disease. Brain 130:206–221

    Article  PubMed  Google Scholar 

  6. Reiner A, Albin RL, Anderson KD et al (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A 85:5733–5737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mehrabi NF, Waldvogel HJ, Tippett LJ et al (2016) Symptom heterogeneity in Huntington’s disease correlates with neuronal degeneration in the cerebral cortex. Neurobiol Dis 96:67–74

    Article  PubMed  Google Scholar 

  8. Thu DCV, Oorschot DE, Tippett LJ et al (2010) Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington’s disease. Brain 133:1094–1110

    Article  PubMed  Google Scholar 

  9. Macdonald V, Halliday G (2002) Pyramidal cell loss in motor cortices in Huntington’s disease. Neurobiol Dis 10:378–386

    Article  PubMed  Google Scholar 

  10. Rosas HD, Salat DH, Lee SY et al (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131:1057–1068

    Article  PubMed  Google Scholar 

  11. Walker FO (2007) Huntington’s disease. Lancet 369:218–228

    Article  CAS  PubMed  Google Scholar 

  12. Gunawardena S, Goldstein LSB (2005) Polyglutamine diseases and transport problems: deadly traffic jams on neuronal highways. Arch Neurol 62:46–51

    Article  PubMed  Google Scholar 

  13. Martinez-Vicente M, Talloczy Z, Wong E et al (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13:567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DiFiglia M, Sapp E, Chase KO et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    Article  CAS  PubMed  Google Scholar 

  15. Altar AC, Cai N, Bliven T et al (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389:856–860

    Article  CAS  PubMed  Google Scholar 

  16. Zuccato C, Ciammola A, Rigamonti D et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498

    Article  CAS  PubMed  Google Scholar 

  17. Zuccato C, Marullo M, Conforti P (2008) Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathol 18:225–238

    Google Scholar 

  18. Altar CA, Siuciak JA, Wright P et al (1994) In situ hybridization of trkB and trkC receptor mRNA in rat forebrain and association with high-affinity binding of [125I]BDNF, [125I]NT-4/5 and [125I]NT-3. Eur J Neurosci 6:1389–1405

    Article  CAS  PubMed  Google Scholar 

  19. Ginés S, Bosch M, Marco S et al (2006) Reduced expression of the TrkB receptor in Huntington’s disease mouse models and in human brain. Eur J Neurosci 23:649–658

    Article  PubMed  Google Scholar 

  20. Plotkin JL, Day M, Peterson JD et al (2014) Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron 83:178–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brito V, Puigdellívol M, Giralt A et al (2013) Imbalance of p75(NTR)/TrkB protein expression in Huntington’s disease: implication for neuroprotective therapies. Cell Death Dis 4:e595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6:603–614

    Article  CAS  PubMed  Google Scholar 

  23. Brito V, Giralt A, Enriquez-Barreto L et al (2014) Neurotrophin receptor p75(NTR) mediates Huntington’s disease-associated synaptic and memory dysfunction. J Clin Invest 124:4411–4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dallner C, Woods AG, Deller T et al (2002) CNTF and CNTF receptor alpha are constitutively expressed by astrocytes in the mouse brain. Glia 37:374–378

    Article  PubMed  Google Scholar 

  25. Seidel JL, Faideau M, Aiba I et al (2015) Ciliary neurotrophic factor (CNTF) activation of astrocytes decreases spreading depolarization susceptibility and increases potassium clearance. Glia 63:91–103

    Article  PubMed  Google Scholar 

  26. Wang X, Zheng H, Liu C et al (2008) Ciliary neurotrophic factor-treated astrocyte conditioned medium regulates the L-type calcium channel activity in rat cortical neurons. Neurochem Res 33:826–832

    Article  CAS  PubMed  Google Scholar 

  27. Escartin C, Pierre K, Colin A et al (2007) Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults. J Neurosci 27:7094–7104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emerich DF, Winn SR, Hantraye PM et al (1997) Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature 386:395–399

    Article  CAS  PubMed  Google Scholar 

  29. Mittoux V, Joseph JM, Conde F et al (2000) Restoration of cognitive and motor functions by ciliary neurotrophic factor in a primate model of Huntington’s disease. Hum Gene Ther 11:1177–1187

    Article  CAS  PubMed  Google Scholar 

  30. Régulier E, Pereira de Almeida L et al (2002) Dose-dependent neuroprotective effect of ciliary neurotrophic factor delivered via tetracycline-regulated lentiviral vectors in the quinolinic acid rat model of Huntington’s disease. Hum Gene Ther 13:1981–1990

    Article  PubMed  Google Scholar 

  31. Bachoud-Lévi AC, Déglon N, Nguyen JP et al (2000) Neuroprotective gene therapy for Huntington’s disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF. Hum Gene Ther 11:1723–1729

    Article  PubMed  Google Scholar 

  32. Bloch J, Bachoud-Lévi AC, Déglon N et al (2004) Neuroprotective gene therapy for Huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther 15:968–975

    Article  CAS  PubMed  Google Scholar 

  33. Burazin TC, Gundlach AL (1999) Localization of GDNF/neurturin receptor (c-ret, GFRalpha-1 and alpha-2) mRNAs in postnatal rat brain: differential regional and temporal expression in hippocampus, cortex and cerebellum. Brain Res Mol Brain Res 73:151–171

    Article  CAS  PubMed  Google Scholar 

  34. Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  PubMed  Google Scholar 

  35. Kotzbauer PT, Lampe PA, Heuckeroth RO et al (1996) Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384:467–470

    Article  CAS  PubMed  Google Scholar 

  36. Hidalgo-Figueroa M, Bonilla S, Gutiérrez F et al (2012) GDNF is predominantly expressed in the PV+ neostriatal interneuronal ensemble in normal mouse and after injury of the nigrostriatal pathway. J Neurosci 32:864–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Araujo DM, Hilt DC (1997) Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington’s disease. Neuroscience 81:1099–1110

    Article  CAS  PubMed  Google Scholar 

  38. Araujo DM, Hilt DC (1998) Glial cell line-derived neurotrophic factor attenuates the locomotor hypofunction and striatonigral neurochemical deficits induced by chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid. Neuroscience 82:117–127

    Article  CAS  PubMed  Google Scholar 

  39. Anderson KD, Panayotatos N, Corcoran TL et al (1996) Ciliary neurotrophic factor protects striatal output neurons in an animal model of Huntington disease. Proc Natl Acad Sci U S A 93:7346–7351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Volpe BT, Wildmann J, Altar CA (1998) Brain-derived neurotrophic factor prevents the loss of nigral neurons induced by excitotoxic striatal-pallidal lesions. Neuroscience 83:741–748

    Article  CAS  PubMed  Google Scholar 

  41. Canals JM, Pineda JR, Torres-Peraza JF et al (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 24:7727–7739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Griffioen KJ, Wan R, Brown TR et al (2012) Aberrant heart rate and brainstem brain-derived neurotrophic factor (BDNF) signaling in a mouse model of Huntington’s disease. Neurobiol Aging 33:1481.e1–1481.e5

    Article  CAS  Google Scholar 

  43. Giampà C, Montagna E, Dato C et al (2013) Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease. PLoS One 8:e64037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Emerich DF, Lindner MD, Winn SR et al (1996) Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington’s disease. J Neurosci 16:5168–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Emerich DF, Bruhn S, Chu Y, Kordower JH (1998) Cellular delivery of CNTF but not NT-4/5 prevents degeneration of striatal neurons in a rodent model of Huntington’s disease. Cell Transplant 7:213–225

    PubMed  CAS  Google Scholar 

  46. Popovic N, Maingay M, Kirik D, Brundin P (2005) Lentiviral gene delivery of GDNF into the striatum of R6/2 Huntington mice fails to attenuate behavioral and neuropathological changes. Exp Neurol 193:65–74

    Article  CAS  PubMed  Google Scholar 

  47. Denovan-Wright EM, Attis M, Rodriguez-Lebron E, Mandel RJ (2008) Sustained striatal ciliary neurotrophic factor expression negatively affects behavior and gene expression in normal and R6/1 mice. J Neurosci Res 86:1748–1757

    Article  CAS  PubMed  Google Scholar 

  48. McBride JL, Ramaswamy S, Gasmi M et al (2006) Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 103:9345–9350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramaswamy S, McBride JL, Han I et al (2009) Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 34:40–50

    Article  CAS  PubMed  Google Scholar 

  50. Zala D, Bensadoun J-C, Pereira de Almeida L et al (2004) Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington’s disease transgenic mice. Exp Neurol 185:26–35

    Article  CAS  PubMed  Google Scholar 

  51. McBride JL, During MJ, Wuu J et al (2003) Structural and functional neuroprotection in a rat model of Huntington’s disease by viral gene transfer of GDNF. Exp Neurol 181:213–223

    Article  CAS  PubMed  Google Scholar 

  52. Ramaswamy S, McBride JL, Herzog CD et al (2007) Neurturin gene therapy improves motor function and prevents death of striatal neurons in a 3-nitropropionic acid rat model of Huntington’s disease. Neurobiol Dis 26:375–384

    Article  CAS  PubMed  Google Scholar 

  53. Mittoux V, Ouary S, Monville C et al (2002) Corticostriatopallidal neuroprotection by adenovirus-mediated ciliary neurotrophic factor gene transfer in a rat model of progressive striatal degeneration. J Neurosci 22:4478–4486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kells AP, Fong DM, Dragunow M et al (2004) AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 9:682–688

    Article  CAS  PubMed  Google Scholar 

  55. Kells AP, Henry RA, Connor B (2008) AAV-BDNF mediated attenuation of quinolinic acid-induced neuropathology and motor function impairment. Gene Ther 15:966–977

    Article  CAS  PubMed  Google Scholar 

  56. Dionne KE, Cain BM, Li RH et al (1996) Transport characterization of membranes for immunoisolation. Biomaterials 17:257–266

    Article  CAS  PubMed  Google Scholar 

  57. Aebischer P, Tresco PA, Winn SR et al (1991) Long-term cross-species brain transplantation of a polymer-encapsulated dopamine-secreting cell line. Exp Neurol 111:269–275

    Article  CAS  PubMed  Google Scholar 

  58. Lindner MD, Plone MA, Frydel B et al (1997) Intraventricular encapsulated calf adrenal chromaffin cells: viable for at least 500 days in vivo without detectable adverse effects on behavioral/cognitive function or host immune sensitization in rats. Restor Neurol Neurosci 11:21–35

    PubMed  CAS  Google Scholar 

  59. Emerich DF, Orive G, Thanos C et al (2014) Encapsulated cell therapy for neurodegenerative diseases: from promise to product. Adv Drug Deliv Rev 67–68:131–141

    Article  CAS  PubMed  Google Scholar 

  60. Fjord-Larsen L, Kusk P, Tornøe J et al (2010) Long-term delivery of nerve growth factor by encapsulated cell biodelivery in the Göttingen minipig basal forebrain. Mol Ther 18:2164–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wahlberg LU, Lind G, Almqvist PM et al (2012) Targeted delivery of nerve growth factor via encapsulated cell biodelivery in Alzheimer disease: a technology platform for restorative neurosurgery. J Neurosurg 117:340–347

    Article  PubMed  Google Scholar 

  62. Fjord-Larsen L, Kusk P, Emerich DF et al (2012) Increased encapsulated cell biodelivery of nerve growth factor in the brain by transposon-mediated gene transfer. Gene Ther 19:1010–1017

    Article  CAS  PubMed  Google Scholar 

  63. Gray SJ, Woodard KT, Samulski RJ (2010) Viral vectors and delivery strategies for CNS gene therapy. Ther Deliv 1:517–534

    Article  CAS  PubMed  Google Scholar 

  64. Choi VW, McCarty DM, Samulski RJ (2005) AAV hybrid serotypes: improved vectors for gene delivery. Curr Gene Ther 5:299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hadaczek P, Eberling JL, Pivirotto P et al (2010) Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther 18:1458–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kordower JH, Emborg ME, Bloch J et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    Article  CAS  PubMed  Google Scholar 

  67. Thomas CE, Birkett D, Anozie I et al (2001) Acute direct adenoviral vector cytotoxicity and chronic, but not acute, inflammatory responses correlate with decreased vector-mediated transgene expression in the brain. Mol Ther 3:36–46

    Article  CAS  PubMed  Google Scholar 

  68. Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8:e76310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morfini GA, You Y-M, Pollema SL et al (2009) Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat Neurosci 12:864–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stokin GB, Lillo C, Falzone TL et al (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307:1282–1288

    Article  CAS  PubMed  Google Scholar 

  71. Chu Y, Morfini GA, Langhamer LB et al (2012) Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 135:2058–2073

    Article  PubMed  PubMed Central  Google Scholar 

  72. Szebenyi G, Morfini GA, Babcock A et al (2003) Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 40:41–52

    Article  CAS  PubMed  Google Scholar 

  73. Bartus RT, Herzog CD, Chu Y et al (2011) Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson’s disease and nonhuman primate brains. Mov Disord 26:27–36

    Article  PubMed  Google Scholar 

  74. Marks WJ Jr, Bartus RT, Siffert J et al (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 9:1164–1172

    Article  CAS  PubMed  Google Scholar 

  75. Olanow WC, Bartus RT, Baumann TL et al (2015) Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann Neurol 78:248–257

    Article  CAS  Google Scholar 

  76. Taymans J-M, Vandenberghe LH, Haute CVD et al (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 18:195–206

    Article  CAS  PubMed  Google Scholar 

  77. Burger C, Gorbatyuk OS, Velardo MJ et al (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10:302–317

    Article  CAS  PubMed  Google Scholar 

  78. Markakis EA, Vives KP, Bober J et al (2010) Comparative transduction efficiency of AAV vector serotypes 1–6 in the substantia nigra and striatum of the primate brain. Mol Ther 18:588–593

    Article  CAS  PubMed  Google Scholar 

  79. Dodiya HB, Björklund T, Stansell J et al (2010) Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol Ther 18:579–587

    Article  CAS  PubMed  Google Scholar 

  80. Hadaczek P, Stanek L, Ciesielska A et al (2016) Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: implications for Huntington’s disease. Mol Ther Methods Clin Dev 3:16037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li W, Asokan A, Wu Z et al (2008) Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol Ther 16:1252–1260

    Article  CAS  PubMed  Google Scholar 

  82. Erles K, Sebökovà P, Schlehofer JR (1999) Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol 59:406–411

    Article  CAS  PubMed  Google Scholar 

  83. Chirmule N, Propert K, Magosin S et al (1999) Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther 6:1574–1583

    Article  CAS  PubMed  Google Scholar 

  84. Peden CS, Burger C, Muzyczka N, Mandel RJ (2004) Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol 78:6344–6359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gloaguen I, Costa P, Demartis A et al (1997) Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc Natl Acad Sci U S A 94:6456–6461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310:679–683

    Article  CAS  PubMed  Google Scholar 

  87. Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  CAS  PubMed  Google Scholar 

  88. Marks WJ Jr, Baumann TL, Bartus RT (2016) Long-term safety of patients with Parkinson’s disease receiving rAAV2-neurturin (CERE-120) gene transfer. Hum Gene Ther 27:522–527

    Article  CAS  PubMed  Google Scholar 

  89. Bartus RT, Johnson EM Jr (2017) Clinical tests of neurotrophic factors for human neurodegenerative diseases: Part 2. Where do we stand and where must we go next? Neurobiol Dis 97:169–178

    Article  CAS  PubMed  Google Scholar 

  90. Yang S-H, Cheng P-H, Banta H et al (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453:921–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chan AW, Xu Y, Jiang J et al (2014) A two years longitudinal study of a transgenic Huntington disease monkey. BMC Neurosci 15:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chan AWS, Jiang J, Chen Y et al (2015) Progressive cognitive deficit, motor impairment and striatal pathology in a transgenic Huntington disease monkey model from infancy to adulthood. PLoS One 10:e0122335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Mari Savolainen is funded by The Finnish Cultural Foundation, The Finnish Parkinsons Foundation, and The Maud Kuistila Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey H. Kordower .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Savolainen, M., Emerich, D., Kordower, J.H. (2018). Disease Modification Through Trophic Factor Delivery. In: Precious, S., Rosser, A., Dunnett, S. (eds) Huntington’s Disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7825-0_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7824-3

  • Online ISBN: 978-1-4939-7825-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics