Skip to main content

Rapid Prototyping of Thermoplastic Microfluidic Devices

  • Protocol
  • First Online:
Cell-Based Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1771))

Abstract

Microfluidic systems can be applied to develop unique tools for cell culture, low-cost diagnostics, and precision experimentation by leveraging microscale fluid flow. As the field has expanded and matured, there is a need for rapid prototyping that is both accessible to most research groups and can readily translate toward scalable commercial manufacturing. Here, we describe a protocol that incorporates rapid computer numerical control (CNC) milling of positive molds, casting of a negative high-durometer silicone mold, and hot embossing to produce microfluidic devices composed of virtually any thermoplastic material. The method bypasses the need for high-precision machining of the bonding surfaces by using a cast acrylic stock and only milling channels, thus expanding this protocol to any CNC platform This technique represents a versatile, high-fidelity prototyping method that enables fast turnaround of prototype devices in a standard laboratory setting, while offering scalability for commercial manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    Article  CAS  Google Scholar 

  2. Duncombe TA, Tentori AM, Herr AE (2015) Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Biol 16:554–567

    Article  CAS  Google Scholar 

  3. Novak R, Zeng Y, Shuga J, Venugopalan G, Fletcher DA, Smith MT, Mathies RA (2011) Single-cell multiplex gene detection and sequencing with microfluidically generated agarose emulsions. Angew Chem Int Ed 50:390–395

    Article  CAS  Google Scholar 

  4. Rothbauer M, Wartmann D, Charwat V, Ertl P (2015) Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol Adv 33:948–961

    Article  Google Scholar 

  5. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  CAS  Google Scholar 

  6. Guckenberger DJ, de Groot TE, Wan AMD, Beebe DJ, Young EWK (2015) Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15:2364–2378

    Article  CAS  Google Scholar 

  7. Shiu PP, Knopf GK, Ostojic M, Nikumb S (2008) Rapid fabrication of tooling for microfluidic devices via laser micromachining and hot embossing. J Micromech Microeng 18:25012

    Article  Google Scholar 

  8. Xu J, Locascio L, Gaitan M, Lee CS (2000) Room-temperature imprinting method for plastic microchannel fabrication. Anal Chem 72:1930–1933

    Article  CAS  Google Scholar 

  9. Leech PW (2009) Hot embossing of cyclic olefin copolymers. J Micromech Microeng 19:55008

    Article  Google Scholar 

  10. Attia UM, Marson S, Alcock JR (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluid 7:1

    Article  CAS  Google Scholar 

  11. Ng SH, Wang ZF (2009) Hot roller embossing for microfluidics: process and challenges. Microsyst Technol 15:1149–1156

    Article  CAS  Google Scholar 

  12. Wu W, Manz A (2015) Rapid manufacture of modifiable 2.5-dimensional (2.5D) microstructures for capillary force-driven fluidic velocity control. RSC Adv 5:70737–70742

    Article  CAS  Google Scholar 

  13. Carlborg CF, Haraldsson T, Öberg K, Malkoch M, van der Wijngaart W (2011) Beyond PDMS: off-stoichiometry thiolene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. Lab Chip 11:3136–3147

    Article  CAS  Google Scholar 

  14. Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111

    Article  CAS  Google Scholar 

  15. Sollier E, Murray C, Maoddi P, Carlo DD (2011) Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11:3752–3765

    Article  CAS  Google Scholar 

  16. Lin T-Y, Do T, Kwon P, Lillehoj PB (2017) 3D printed metal molds for hot embossing plastic microfluidic devices. Lab Chip 17:241–247

    Article  CAS  Google Scholar 

  17. Novak R, Ranu N, Mathies RA (2013) Rapid fabrication of nickel molds for prototyping embossed plastic microfluidic devices. Lab Chip 13:1468–1471

    Article  CAS  Google Scholar 

  18. Paredes J, Fink KD, Novak R, Liepmann D (2015) Self-anchoring nickel microelectrodes for rapid fabrication of functional thermoplastic microfluidic prototypes. Sens Actuators B Chem 216:263–270

    Article  CAS  Google Scholar 

  19. Mair DA, Geiger E, Pisano AP, Fréchet JMJ, Svec F (2006) Injection molded microfluidic chips featuring integrated interconnects. Lab Chip 6:1346–1354

    Article  CAS  Google Scholar 

  20. Ogilvie IRG, Sieben VJ, Floquet CFA, Zmijan R, Mowlem MC, Morgan H (2010) Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. J Micromech Microeng 20:65016

    Article  Google Scholar 

  21. Tsao C-W, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6:1–16

    Article  CAS  Google Scholar 

  22. Faustino V, Catarino SO, Lima R, Minas G (2016) Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J Biomech 49:2280–2292

    Article  Google Scholar 

  23. Miserere S, Mottet G, Taniga V, Descroix S, Viovy J-L, Malaquin L (2012) Fabrication of thermoplastics chips through lamination based techniques. Lab Chip 12:1849–1856

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was sponsored by the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Defense Advanced Research Projects Agency under Cooperative Agreement W911NF-12-2-0036, FDA grant HHSF223201310079C, and NIH grants R01 EB020004-01 and 1UG3HL141797-01. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, Food and Drug Administration, or the U.S. Government.

Competing financial interests

D.E.I. is a founder and holds equity in Emulate Inc., and he chairs its scientific advisory board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Ingber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Novak, R., Ng, C.F., Ingber, D.E. (2018). Rapid Prototyping of Thermoplastic Microfluidic Devices. In: Ertl, P., Rothbauer, M. (eds) Cell-Based Microarrays. Methods in Molecular Biology, vol 1771. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7792-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7792-5_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7791-8

  • Online ISBN: 978-1-4939-7792-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics