Skip to main content

Biophotovoltaics: Design and Study of Bioelectrochemical Systems for Biotechnological Applications and Metabolic Investigation

  • Protocol
  • First Online:
Photosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1770))

Abstract

Biophotovoltaic methods rely on the fact that photosynthetic microorganisms, like many others, can export small amounts of electric current. For photosynthetic organisms, this current usually increases on illumination. This “exoelectrogenic” property may be of biotechnological interest, and may also provide useful experimental insights into the physiological status of the cell. We describe how to construct biophotovoltaic devices, and the kinds of measurements that are typically made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Logan BE, Hamelers B, Rozendal R, Schroeder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  PubMed  Google Scholar 

  2. Zou Y, Pisciotta J, Billmyre RB, Baskakov IV (2009) Photosynthetic microbial fuel cells with positive light response. Biotechnol Bioeng 104:939–946

    Article  CAS  PubMed  Google Scholar 

  3. Pisciotta JM, Zou Y, Baskakov IV (2011) Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria. Appl Microbiol Biotechnol 91:377–385

    Article  CAS  PubMed  Google Scholar 

  4. Sokol KP, Mersch D, Hartmann V, Zhang JZ, Nowaczyk MM, Rogner M, Ruff A, Schuhmann W, Plumere N, Reisner E (2016) Rational wiring of photosystem II hierarchical indium tin oxide electrodes using redox polymers. Energy Environ Sci 9:3698–3709

    Article  CAS  Google Scholar 

  5. McCormick AJ, Bombelli P, Scott AM, Philips AJ, Smith AG, Fisher AC, Howe CJ (2011) Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ Sci 4:4699–4709

    Article  CAS  Google Scholar 

  6. Bombelli P, Bradley RW, Scott AM, Philips AJ, McCormick AJ, Cruz SM, Anderson A, Yunus K, Bendall DS, Cameron PJ, Davies JM, Smith AG, Howe CJ, Fisher AC (2011) Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ Sci 4:4690–4698

    Article  CAS  Google Scholar 

  7. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang I, Hong Kim B, Shik Kim K, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan BE, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 103(30):11358–11363

    Article  CAS  PubMed  Google Scholar 

  8. Sure S, Ackland ML, Torriero AAJ, Adholeya A, Kochar M (2016) Microbial nanowires: an electrifying tale. Microbiology 162:2017–2028

    Article  CAS  Google Scholar 

  9. McCormick AJ, Bombelli P, Lea-Smith DJ, Bradley RW, Scott AM, Fisher AC, Smith AG, Howe CJ (2013) Hydrogen production through oxygenic photosynthesis using the cyanobacterium Synechocystis sp. PCC 6803 in a bio-photoelectrolysis cell (BPE) system. Energy Environ Sci 6:2682–2690

    Article  CAS  Google Scholar 

  10. Pinhassi RI, Kallmann D, Saper G, Dotan H, Linkov A, Kay A, Liveanu V, Schuster G, Adir N, Rothschild A (2016) Hybrid bio-photo-electro-chemical cells for solar water splitting. Nat Commun 7:12552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bombelli P, Muller T, Herling TW, Howe CJ, Knowles TPJ (2015) A high power-density, mediator-free, microfluidic biophotovoltaic device for cyanobacterial cells. Adv Energy Mater 5:1410229

    Article  CAS  Google Scholar 

  12. McCormick AJ, Bombelli P, Bradley RW, Thorne R, Wenzel T, Howe CJ (2015) Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ Sci 8:1092–1109

    Article  CAS  Google Scholar 

  13. Anderson A, Laohavisit A, Blaby IK, Howe CJ, Merchant SS, Davies JM, Smith AG (2015) Exploiting algal NADPH oxidase for biophotovoltaic energy. Plant Biotechnol J 14:22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Laohavisit A, Anderson A, Bombelli P, Jacobs M, Howe CJ, Davies JM, Smith AG (2015) Enhancing plasma membrane NADPH oxidase activity increases current output by diatoms in biophotovoltaic devices. Algal Res 12:91–98

    Article  Google Scholar 

  15. Darus L, Ledezma P, Keller J, Freguia S (2016) Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress. Photosynth Res 127:347–354

    Article  CAS  PubMed  Google Scholar 

  16. Wei X, Lee H, Choi S (2016) Biopower generation in a microfluidic bio-solar panel. Sensors Actuators B 228:151–155

    Article  CAS  Google Scholar 

  17. Wu Y, Xiao Y, Wang Z, Zhao F (2016) Performance of bioelectrochemical systems inoculated with Desmodesmus sp. A8 under different light sources. Biorem J 20:233–239

    Article  CAS  Google Scholar 

  18. Bradley RW, Bombelli P, Lea-Smith DJ, Howe CJ (2013) Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems. Phys Chem Chem Phys 15:13611–13618

    Article  CAS  PubMed  Google Scholar 

  19. Ng FL, Phang SM, Periasamy V, Yunus K, Fisher AC (2014) Evaluation of algal biofilms on Indium Tin Oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance. PLoS One 9:e97643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hasan K, Grippo V, Sperling E, Packer MA, Leech D, Gorton L (2017) Evaluation of photocurrent generation from different photosynthetic organisms. ChemElectroChem 4:412–417

    Article  CAS  Google Scholar 

  21. Cereda A, Hitchcock A, Symes MD, Cronin L, Bibby TS, Jones AK (2014) A bioelectrochemical approach to characterize extracellular electron transfer by Synechocystis sp PCC6803. PLoS One 9:e91484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  23. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  24. Bombelli P, Zarrouati M, Thorne RJ, Schneider K, Rowden SJL, Ali A, Yunus K, Cameron PJ, Fisher AC, Wilson DI, Howe CJ, McCormick AJ (2012) Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Phys Chem Chem Phys 14:12221–12229

    Article  CAS  PubMed  Google Scholar 

  25. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, ISBN: 0-471-04372-9

    Google Scholar 

  26. Hall DO, Rao KK (1999) Photosynthesis, 6th edn. Cambridge University Press, Cambridge. ISBN: 0-521-64497-6

    Google Scholar 

Download references

Acknowledgments

CJH and PB thank the Leverhulme Trust for financial support. SJLR thanks the European Commission (EU KBBE.2013.3.2-02 programme, D-Factory: 368 613870) for financial support. We thank Mr. Pavel Artemov for designing Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Howe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rowden, S.J.L., Bombelli, P., Howe, C.J. (2018). Biophotovoltaics: Design and Study of Bioelectrochemical Systems for Biotechnological Applications and Metabolic Investigation. In: Covshoff, S. (eds) Photosynthesis. Methods in Molecular Biology, vol 1770. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7786-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7786-4_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7785-7

  • Online ISBN: 978-1-4939-7786-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics