Skip to main content

Cell Culture Analysis of the Phagocytosis of Photoreceptor Outer Segments by Primary Mouse RPE Cells

  • Protocol
  • First Online:
Mouse Retinal Phenotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1753))

Abstract

The phagocytosis of photoreceptor outer segments (POSs) by the retinal pigment epithelium (RPE) is essential for retinal homeostasis. Defects in this process can be caused by mutations in the photoreceptor cells, the RPE cells, or both cell types. This function can be experimentally investigated by performing an in vitro phagocytosis assay, in which cultured RPE cells are challenged with isolated POSs, and subsequently tested for their ability to degrade the POSs. A significant advantage of this approach is that mutant phenotypes can be attributed either to the photoreceptor or the RPE cells, by experimenting with different permutations of mutant and control photoreceptor and RPE cells. In this chapter, we detail the method for a double-immunofluorescence assay for analysis of the binding, ingestion, and subsequent degradation of isolated mouse POSs by cultured mouse primary RPE cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  2. Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42:392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Young RW (1967) The renewal of photoreceptor cell outer segments. J Cell Biol 33:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Williams DS, Fisher SK (1987) Prevention of the shedding of rod outer segment disks by detachment from the retinal pigment epithelium. Invest Ophthalmol Vis Sci 28:184–187

    CAS  PubMed  Google Scholar 

  5. Lin H, Clegg DO (1998) Integrin alpha v beta 5 participates in the binding of photoreceptor rod outer segments during phagocytosis by cultured human retinal pigment epithelium. Invest Ophthalmol Vis Sci 39:1703–1712

    CAS  PubMed  Google Scholar 

  6. D'Cruz PM, Yasumura D, Weir J et al (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651

    Article  PubMed  Google Scholar 

  7. Gibbs D, Kitamoto J, Williams DS (2003) Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the usher syndrome 1b protein. Proc Natl Acad Sci U S A 100:6481–6486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang M, Esteve-Rudd J, Lopes VS et al (2015) Microtubule motors transport phagosomes in the RPE, and lack of klc1 leads to AMD-like pathogenesis. J Cell Biol 210:595–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bosch E, Horwitz J, Bok D (1993) Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction. J Histochem Cytochem 41:253–263

    Article  CAS  PubMed  Google Scholar 

  10. Wavre-Shapton ST, Meschede IP, Seabra MC et al (2014) Phagosome maturation during endosome interaction revealed by partial rhodopsin processing in retinal pigment epithelium. J Cell Sci 127:3852–3861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. LaVail MM (1976) Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science 194:1071–1074

    Article  CAS  PubMed  Google Scholar 

  12. Volland S, Esteve-Rudd J, Hoo J et al (2015) A comparison of some organizational characteristics of the mouse central retina and the human macula. PLoS One 10:e0125631

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hogan MJ (1972) Role of the retinal pigment epithelium in macular disease. Trans Am Acad Ophthalmol Otolaryngol 76:64–80

    CAS  PubMed  Google Scholar 

  14. Feeney L (1973) The phagolysosomal system of the pigment epithelium. A key to retinal disease. Investig Ophthalmol 12:635–638

    CAS  Google Scholar 

  15. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619

    Article  CAS  PubMed  Google Scholar 

  16. Rakoczy PE, Zhang D, Robertson T et al (2002) Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am J Pathol 161:1515–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80:595–606

    Article  CAS  PubMed  Google Scholar 

  18. Bowes Rickman C, Farsiu S, Toth CA et al (2013) Dry age-related macular degeneration: mechanisms, therapeutic targets, and imaging. Invest Ophthalmol Vis Sci 54:ORSF68–ORSF80

    Google Scholar 

  19. Wavre-Shapton ST, Tolmachova T, Lopes da Silva M et al (2013) Conditional ablation of the choroideremia gene causes age-related changes in mouse retinal pigment epithelium. PLoS One 8:e57769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duncan JL, LaVail MM, Yasumura D et al (2003) An RCS-like retinal dystrophy phenotype in Mer knockout mice. Invest Ophthalmol Vis Sci 44:826–838

    Article  PubMed  Google Scholar 

  21. Nandrot EF, Kim Y, Brodie SE et al (2004) Loss of synchronized retinal phagocytosis and age-related blindness in mice lacking alpha v beta 5 integrin. J Exp Med 200:1539–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Radu RA, Hu J, Yuan Q et al (2011) Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem 286:18593–18601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gibbs D, Williams DS (2003) Isolation and culture of primary mouse retinal pigmented epithlelial cells. Adv Exp Med Biol 533:347–352

    Article  CAS  PubMed  Google Scholar 

  24. Esteve-Rudd J, Lopes VS, Jiang M et al (2014) In vivo and in vitro monitoring of phagosome maturation in retinal pigment epithelium cells. Adv Exp Med Biol 801:85–90

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grants R01EY13408 and P30EY00331 (DSW), and F31EY026805 (RAH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hazim, R.A., Williams, D.S. (2018). Cell Culture Analysis of the Phagocytosis of Photoreceptor Outer Segments by Primary Mouse RPE Cells. In: Tanimoto, N. (eds) Mouse Retinal Phenotyping. Methods in Molecular Biology, vol 1753. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7720-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7720-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7719-2

  • Online ISBN: 978-1-4939-7720-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics