Skip to main content

Analysis of Retinal Vascular Plexuses and Interplexus Connections

  • Protocol
  • First Online:
Mouse Retinal Phenotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1753))

Abstract

The retina is a highly organized neural tissue consisting of three neural layers and two synaptic layers. Blood vessels that nourish the mouse and human neural retina mirror this organization consisting of three plexus layers, or plexuses, that run parallel within the retina, connected by interplexus vessels to create a closed vascular network. Here, we describe a methodology to describe this organization that can be used to interrogate factors mediating retinal vessel patterning including: coverage of the vascular plexuses, branching and orientation of the interplexus connections, and digital reconstruction of the retinal vasculature to measure vessel length and density. The methodology focuses on the mouse retina, but can easily be adapted to study retinal vessels of other species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masland RH (2012) The neuronal organization of the retina. Neuron 76(2):266–280. https://doi.org/10.1016/j.neuron.2012.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fruttiger M (2007) Development of the retinal vasculature. Angiogenesis 10(2):77–88. https://doi.org/10.1007/s10456-007-9065-1

    Article  PubMed  Google Scholar 

  3. Simmons AB, Merrill MM, Reed JC, Deans MR, Edwards MM, Fuerst PG (2016) Defective angiogenesis and intraretinal bleeding in mouse models with disrupted inner retinal lamination. Invest Ophthalmol Vis Sci 57(4):1563–1577. https://doi.org/10.1167/iovs.15-18395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Edwards MM, McLeod DS, Li R, Grebe R, Bhutto I, Mu X, Lutty GA (2012) The deletion of Math5 disrupts retinal blood vessel and glial development in mice. Exp Eye Res 96(1):147–156. https://doi.org/10.1016/j.exer.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  5. Usui Y, Westenskow PD, Kurihara T, Aguilar E, Sakimoto S, Paris LP, Wittgrove C, Feitelberg D, Friedlander MS, Moreno SK, Dorrell MI, Friedlander M (2015) Neurovascular crosstalk between interneurons and capillaries is required for vision. J Clin Invest 125(6):2335–2346. https://doi.org/10.1172/JCI80297

    Article  PubMed  PubMed Central  Google Scholar 

  6. Okabe K, Kobayashi S, Yamada T, Kurihara T, Tai-Nagara I, Miyamoto T, Mukouyama YS, Sato TN, Suda T, Ema M, Kubota Y (2014) Neurons limit angiogenesis by titrating VEGF in retina. Cell 159(3):584–596. https://doi.org/10.1016/j.cell.2014.09.025

    Article  CAS  PubMed  Google Scholar 

  7. Kim J, Oh WJ, Gaiano N, Yoshida Y, Gu C (2011) Semaphorin 3E-Plexin-D1 signaling regulates VEGF function in developmental angiogenesis via a feedback mechanism. Genes Dev 25(13):1399–1411. https://doi.org/10.1101/gad.2042011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2015) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 51:1–40. https://doi.org/10.1016/j.preteyeres.2015.06.003

    Article  PubMed  Google Scholar 

  9. Stone J, Itin A, Alon T, Pe'er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15(7):4738–4747

    CAS  PubMed  Google Scholar 

  10. Shen W, Fruttiger M, Zhu L, Chung SH, Barnett NL, Kirk JK, Lee S, Coorey NJ, Killingsworth M, Sherman LS, Gillies MC (2012) Conditional Mullercell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci 32(45):15715–15727. https://doi.org/10.1523/JNEUROSCI.2841-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dorrell MI, Aguilar E, Friedlander M (2002) Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 43(11):3500–3510

    PubMed  Google Scholar 

  12. Gnanaguru G, Bachay G, Biswas S, Pinzon-Duarte G, Hunter DD, Brunken WJ (2013) Laminins containing the beta2 and gamma3 chains regulate astrocyte migration and angiogenesis in the retina. Development 140(9):2050–2060. https://doi.org/10.1242/dev.087817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scott A, Powner MB, Gandhi P, Clarkin C, Gutmann DH, Johnson RS, Ferrara N, Fruttiger M (2010) Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS One 5(7):e11863. https://doi.org/10.1371/journal.pone.0011863

    Article  PubMed  PubMed Central  Google Scholar 

  14. Arnold T, Betsholtz C (2013) Correction: the importance of microglia in the development of the vasculature in the central nervous system. Vasc Cell 5(1):12. https://doi.org/10.1186/2045-824X-5-12

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hartnett ME (2016) Advances in understanding and management of retinopathy of prematurity. Surv Ophthalmol 62(3):257–276. https://doi.org/10.1016/j.survophthal.2016.12.004

    Article  PubMed  Google Scholar 

  16. Lutty GA (2013) Effects of diabetes on the eye. Invest Ophthalmol Vis Sci 54(14):ORSF81–ORSF87. https://doi.org/10.1167/iovs.13-12979

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mehta S (2015) Age-related macular degeneration. Prim Care 42(3):377–391. https://doi.org/10.1016/j.pop.2015.05.009

    Article  PubMed  Google Scholar 

  18. Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, Macdonald D, Tarkowska A, Sticco C, Hill E, Rossner M, Eliceiri KW, Swedlow JR (2010) Metadata matters: access to image data in the real world. J Cell Biol 189(5):777–782. https://doi.org/10.1083/jcb.201004104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Longair MH, Baker DA, Armstrong JD (2011) Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27(17):2453–2454. https://doi.org/10.1093/bioinformatics/btr390

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Fuerst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Simmons, A.B., Fuerst, P.G. (2018). Analysis of Retinal Vascular Plexuses and Interplexus Connections. In: Tanimoto, N. (eds) Mouse Retinal Phenotyping. Methods in Molecular Biology, vol 1753. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7720-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7720-8_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7719-2

  • Online ISBN: 978-1-4939-7720-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics