Skip to main content

Unified Field Theory up to the 1960s: Its Development and Some Interactions Among Research Groups

  • Chapter
  • First Online:
Beyond Einstein

Part of the book series: Einstein Studies ((EINSTEIN,volume 14))

  • 1283 Accesses

Abstract

After the attempts at unifying the electromagnetic and gravitational fields by H. Weyl and A. S. Eddington, A. Einstein quickly became a central and driving figure in this research. His concept of unifying fields via geometry (affine or metric-affine) was taken up by others like E. Schrödinger in Dublin, M.-A. Tonnelat in Paris, B. Finzi in Milano, V. Hlavatý, Bloomington, Indiana, and their collaborators. Larger groups also existed in Japan and India. Worldwide, not many more than 170 physicists and mathematicians took part in this research. After a sketch of the geometrical and physical concepts involved, I briefly describe some scientific relations among various persons/groups and the changing interest in research concerning classsical unified field theory during the period investigated (ca. 1930 to the 1960s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Italian groups around Bruno Finzi (1899–1974) and Maria Pastori (1895–1975) will be taken into account in Section 14.4.2.

  2. 2.

    This 2nd part will, hopefully, be ready during 2010.

  3. 3.

    The skew-symmetrical part appears in the “angle” and leads to an unwanted property: The angle between X und Y is different from the angle between Y and X: \(cos(\angle (X,Y)) - cos(\angle (Y,X )) = 2 \frac {k_{ij} X^i Y^j}{|X||Y|} \neq 0\).

  4. 4.

    Note that the symmetric and skew-symmetric parts have their own inverses.

  5. 5.

    For an arbitrary curved surface there is no a priori rule when to call vectors in different points as being parallel.

  6. 6.

    The name used in the Paris group for Equation (14.8), i.e., “equation de liaison” does not carry a physical interpretation.

  7. 7.

    The gauge idea was successfully resurrected in 1928, however, within quantum mechanics. It later played a big role within non-abelian gauge theories.

  8. 8.

    Note that alternative curvature tensors could and have been defined.

  9. 9.

    We cannot discuss here the many different possibilities for building symmetric rank 2 tensors from the curvature tensor.

  10. 10.

    Thus 84 field equations hold for the 80 variables.

  11. 11.

    \( A_{,~j} := \frac {\partial A}{\partial x^j}\).

  12. 12.

    Note that another possibility would have been \(\frac {1}{2}g^{kr} (g_{ri,~j} + g_{jr,~i} - g_{ji,~r})\equiv \{.. \}_{Hattori}+ 2 k^{kl}h_{lm}\{{ }_{ij}^m \}_{h} + \theta ^{~~k}_{ij}\) with \(\theta ^{~~k}_{ij}= \frac {1}{2}k^{kr}(k_{ri,j} + k_{jr,i} - k_{ji,r})~.\)

  13. 13.

    It is the “Bose” from Bose-Einstein statistics.

  14. 14.

    Maurer-Tison introduced

    $$\displaystyle \begin{aligned} g_{\alpha \beta} &= h_{\alpha \beta} + k_{\alpha \beta}, \\ g^{\alpha \beta} &= l^{\alpha \beta} + m^{\alpha \beta}. \end{aligned} $$
  15. 15.

    q is another constant.

  16. 16.

    At present, my databank contains 632 papers from 1930–1965.

References

  • Arnowitt, R. L. (1957). Phenomenological approach to a unified field theory. Physical Review, 105, 735–742.

    Article  MathSciNet  Google Scholar 

  • Bonnor, W. B. (1954). The equation of motion in the non-symmetric unified field theory. Proceedings of the Royal Society of London, A 226, 366–377.

    Article  MathSciNet  Google Scholar 

  • Bonnor, W. B. (1957). Les équations du mouvement en théorie unitaire d‘Einstein-Schrödinger. Annales de l’Institut H. Poincaré., 15, fasc. 3, 133–145.

    Google Scholar 

  • Bose, S. (1954). The affine connection in Einstein’s new unitary field theory. Annals of Mathematics, 59, 171–176.

    Article  MathSciNet  Google Scholar 

  • Bose, S. (1955). Solution d‘une èquation tensorielle intervenant dans la théorie du champ unitaire. Bulletin de la Société Mathématique de France, 83, 81–88.

    Article  MathSciNet  Google Scholar 

  • Crumeyrolle, A. (1962). Sur quelques interprétations physiques et théoriques des équations du champ unitaire d‘Einstein-Schrödinger. Rivista di matematica della Università di Parma (2), 3, 331–391.

    MATH  Google Scholar 

  • Einstein, A. (1925). Einheitliche Feldtheorie von Gravitation und Elektrizität. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 22, 414–419.

    MATH  Google Scholar 

  • Einstein, A. (1945). A Generalization of the relativistic theory of gravitation. Annals of Mathematics, 46, 578–584.

    Article  MathSciNet  Google Scholar 

  • Einstein, A. (1950). The meaning of relativity (4th edn.). London: Methuen. Appendix II: “Generalization of Gravitation Theory.”

    Google Scholar 

  • Einstein, A. (1952). A comment on a criticism of unified field theory. Physical Review, 89, 321.

    Article  MathSciNet  Google Scholar 

  • Einstein, A., Infeld, & L., Hoffmann, B. (1938). The gravitational equations and the problem of motion. Annals of Mathematics, 39, 65–100.

    Article  MathSciNet  Google Scholar 

  • Einstein, A., & Straus, E. G. (1946). A Generalization of the relativistic theory of gravitation. II. Annals of Mathematics, 47, 731–741.

    Article  MathSciNet  Google Scholar 

  • Goenner, H. (2004). On the history of unified field theory. Living Reviews in Relativity, 7, 2. https://doi.org/10.12942/lrr-2004-2.

    Article  Google Scholar 

  • Goenner, H. (2014). On the history of unified field theory, Part II. Living Reviews in Relativity, 17, 5. https://doi.org/10.12942/lrr-2014-5.

    Article  Google Scholar 

  • Hattori, K. (1928). Über eine formale Erweiterung der Relativitätstheorie und ihren Zusammenhang mit der Theorie der Elektrizität. Physikalische Zeitschrift, 29, 538–549.

    MATH  Google Scholar 

  • Hlavatý, V. (1958). Geometry of Einstein’s unified field theory. Groningen: P. Nordhoff.

    MATH  Google Scholar 

  • Infeld, L. (1950). The new Einstein theory and the equations of motion. Acta Physica Polonica, 10, fasc.3–4, 284–293.

    Google Scholar 

  • Israel, W., & Trollope, R. (1961). New possibilities for a unified field theory. Journal of Mathematical Physics, 2, 777–786.

    Article  MathSciNet  Google Scholar 

  • Kursunoglu, B. (1952). Gravitation and electrodynamics. Physical Review, 88, 1369–1379.

    Article  MathSciNet  Google Scholar 

  • Lichnerowicz, A. (1953). Compatibilité des Équations de la Théorie Unitaire d‘Einstein-Schrödinger. Comptes Rendus de l’ Academie des Sciences, Paris, 237, 1383–1386.

    MATH  Google Scholar 

  • Lichnerowicz, A. (1954). Compatibilité des Équations de la Théorie Unitaire du Champ d‘Einstein. Journal of Rational Mechanics and Analysis, 3, 487–521.

    MATH  Google Scholar 

  • Lichnerowicz, A. (1955a). Les théories relativistes de la gravitation et de l’électromagnétisme. Paris: Masson.

    MATH  Google Scholar 

  • Lichnerowicz, A. (1955b). Étude des Équations de la Théorie Unitaire d‘Einstein. Rendiconti del Seminario Matematico e Fisico di Milano, 25, 121–133.

    Article  Google Scholar 

  • Maurer-Tison, F. (1959). Aspects mathématiques de la théorie unitaire du champ d’Einstein. Annales Scientifiques de l’école Normale Supérieure, 3e série, t. 76, 185–269.

    Article  MathSciNet  Google Scholar 

  • Mavridès, S. (1955). La solution générale des équations d‘Einstein \(g^{\underset {+}{\mu }\underset {-}{\nu };\rho } = 0.\) Nuovo Cimento, 2, Series 10, 1141–1164.

    Google Scholar 

  • O’Raifeartaigh, L., & Straumann, N. (2000). Gauge theory: Historical origins and some modern developments. Reviews of Modern Physics, 72, 1–23.

    Article  MathSciNet  Google Scholar 

  • Schrödinger, E. (1946). Affine feldtheorie und meson. Verhandlungen der Schweizerischen Naturforschenden Gesellschaft, 126, 53–61.

    MathSciNet  MATH  Google Scholar 

  • Schrödinger, E. (1948a). The final affine field laws. II. Proceedings of the Royal Irish Academy, A51, 205–216.

    Google Scholar 

  • Schrödinger, E. (1948b). The final affine field laws III. Proceedings of the Royal Irish Academy, 52A, 1–9.

    Google Scholar 

  • Schulmann, R., Kox A. J., Janssen, M., & Illy, J. (Eds.) (1988). The collected papers of Albert Einstein (Vol. 8). Princeton: Princeton University Press.

    Google Scholar 

  • Straus, E. G. (1949). Some results in Einstein’s unified field theory. Review of Modern Physics, 21, 414–420.

    Article  MathSciNet  Google Scholar 

  • Tonnelat, M.-A. (1949). Théorie unitaire du champ physique. 1. Les tenseurs fondamentaux et la connexion affine. 2. Cas d’une métrique symétrique. 3. Détermination des tenseurs fondamentaux. Comptes rendus de l’academie des Sciences, 228, 368–370, 660–662, 1846–1848.

    Google Scholar 

  • Tonnelat, M.-A. (1950a). Résolution des equations fondamentales d‘une théorie unitaire affine. Comptes rendus de l’academie des Sciences, 230, 182–184.

    MATH  Google Scholar 

  • Tonnelat, M.-A. (1950b). Théorie unitaire affine. I. Choix des tenseurs de base et obtension de l’équation fondamentale. Comptes rendus de l’academie des Sciences, 231, 470–472.

    MATH  Google Scholar 

  • Tonnelat, M.-A. (1950c). Théorie unitaire affine. II. Résolution rigoureuse de l’équation fondamentale. Comptes rendus de l’academie des Sciences, 231, 487–489.

    MATH  Google Scholar 

  • Tonnelat, M.-A. (1955). La théorie du champ unifié d’Einstein et quelques-uns de ses développements. Paris: Gauthier Villars.

    MATH  Google Scholar 

  • Tonnelat, M.-A. (1956). La solution générale des équations d’Einstein \( g_{\underset {+}{\mu }\underset {-}{\nu }} = 0\). In A. Mercier & M. Korvaire (Eds.), Jubilee of Relativity Theory. Bern, 11–16 July 1955 (pp. 192–197). Basel: Birkhäuser.

    Google Scholar 

  • Weyl, H. (1919). Gravitation und Elektrizität. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Nr. 26, 465–478 with a “Nachtrag” by Einstein, p. 478, and “Erwiderung des Verfassers”, pp. 478–480.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Goenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goenner, H. (2018). Unified Field Theory up to the 1960s: Its Development and Some Interactions Among Research Groups. In: Rowe, D., Sauer, T., Walter, S. (eds) Beyond Einstein. Einstein Studies, vol 14. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-7708-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7708-6_14

  • Published:

  • Publisher Name: Birkhäuser, New York, NY

  • Print ISBN: 978-1-4939-7706-2

  • Online ISBN: 978-1-4939-7708-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics