Skip to main content

Relating High-Dimensional Structural Networks to Resting Functional Connectivity with Sparse Canonical Correlation Analysis for Neuroimaging

  • Protocol
  • First Online:
Brain Morphometry

Part of the book series: Neuromethods ((NM,volume 136))

  • 1357 Accesses

Abstract

Human brain mapping is increasingly faced with the need to efficiently interrogate small sample size, but high-dimensional (“short and wide”) data-sets. Such data may derive from rare or difficult to identify populations wherein we seek to detect subtle network changes that precede disease. Few prior hypotheses may exist in these cases and yet, due to small sample size, exploratory analysis is power challenged. We overview how to use sparse canonical correlation analysis to produce biologically principled low-dimensional representations before proceeding to hypothesis testing. This strategy conserves power by taking advantage of the underlying neurobiological covariation across modalities to compress large data-sets. We provide an example that maps voxel-wise cortical thickness measurements to resting state network correlations in order to identify structure-function sub-networks with little further supervision. The resulting network-like, sparse basis functions allow one to predict traditional univariate outcomes from multiple neuroimaging modalities even when sample sizes are relatively small. Importantly, these data-driven functions are anatomically and edge-wise specific, allowing a nearly traditional neuroscientific interpretation.

Dr. Avants recently became a Biogen employee.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witten DM, Tibshirani R, Hastie T (2009) A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics (Oxford, England) 10:515–534

    Article  Google Scholar 

  2. Avants BB, Cook PA, Ungar L et al (2010) Dementia induces correlated reductions in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse canonical correlation analysis. NeuroImage 50:1004–1016

    Article  PubMed  PubMed Central  Google Scholar 

  3. Avants B, Cook PA, McMillan C et al (2010) Sparse unbiased analysis of anatomical variance in longitudinal imaging. In: Medical image computing and computer-assisted intervention: MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention, vol 13. Springer, Berlin, Heidelberg, pp 324–331

    Google Scholar 

  4. Chalise P, Batzler A, Abo R et al (2012) Simultaneous analysis of multiple data types in pharmacogenomic studies using weighted sparse canonical correlation analysis. Omics 16:363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duda JT, Detre JA, Kim J et al (2013) Fusing functional signals by sparse canonical correlation analysis improves network reproducibility. In: Medical image computing and computer-assisted intervention: MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention, vol 16. Springer, Berlin, Heidelberg, pp 635–642

    Google Scholar 

  6. Lin D, Calhoun VD, Wang Y-P (2014) Correspondence between fMRI and snp data by group sparse canonical correlation analysis. Med Image Anal 18:891–902

    Article  PubMed  Google Scholar 

  7. Avants BB, Libon DJ, Rascovsky K et al (2014) Sparse canonical correlation analysis relates network-level atrophy to multivariate cognitive measures in a neurodegenerative population. NeuroImage 84:698–711

    Article  PubMed  Google Scholar 

  8. Fang J, Lin D, Schulz SC et al (2016) Joint sparse canonical correlation analysis for detecting differential imaging genetics modules. Bioinformatics (Oxford, England). 32:3480–3488

    CAS  PubMed Central  Google Scholar 

  9. Du L, Huang H, Yan J et al (2016) Structured sparse canonical correlation analysis for brain imaging genetics: an improved graphnet method. Bioinformatics (Oxford, England) 32:1544–1551

    Article  CAS  Google Scholar 

  10. Hotelling H (1936) Relations between two sets of variates. Biometrika 28(377):321

    Article  Google Scholar 

  11. Torres DA, Turnbull D, Sriperumbudur BK et al (2007) Finding musically meaningful words by sparse CCA. In: Neural information processing systems (nips) workshop on music, the brain and cognition

    Google Scholar 

  12. Romero-Garcia R, Atienza M, Cantero JL (2014) Predictors of coupling between structural and functional cortical networks in normal aging. Hum Brain Mapp 35:2724–2740

    Article  PubMed  Google Scholar 

  13. Marstaller L, Williams M, Rich A et al (2015) Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state. Neuroscience 290:369–378

    Article  CAS  PubMed  Google Scholar 

  14. Khundrakpam BS, Lewis JD, Reid A et al (2017) Imaging structural covariance in the development of intelligence. NeuroImage 144:227–240

    Article  PubMed  Google Scholar 

  15. Orban P, Madjar C, Savard M et al (2015) Test-retest resting-state fMRI in healthy elderly persons with a family history of Alzheimer’s disease. Sci Data 2:150043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tustison NJ, Cook PA, Klein A et al (2014) Large-scale evaluation of ants and freesurfer cortical thickness measurements. NeuroImage 99:166–179

    Article  PubMed  Google Scholar 

  17. Das SR, Avants BB, Grossman M et al (2009) Registration based cortical thickness measurement. NeuroImage 45:867–879

    Article  PubMed  Google Scholar 

  18. Power JD, Cohen AL, Nelson SM et al (2011) Functional network organization of the human brain. Neuron 72:665–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shirer WR, Ryali S, Rykhlevskaia E et al (2012) Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 1991(22):158–165

    Article  Google Scholar 

  20. Shirer WR, Jiang H, Price CM et al (2015) Optimization of rs-fMRI pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination. NeuroImage 117:67–79

    Article  PubMed  Google Scholar 

  21. Tustison NJ, Shrinidhi KL, Wintermark M et al (2015) Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13:209–225

    Article  PubMed  Google Scholar 

  22. Avants BB, Duda JT, Kilroy E et al (2015) The pediatric template of brain perfusion. Sci Data 2:150003

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kandel BM, Wang DJJ, Gee JC et al (2015) Eigenanatomy: sparse dimensionality reduction for multi-modal medical image analysis. Methods 73:43–53

    Article  CAS  PubMed  Google Scholar 

  24. Donoho DL, Tsaig Y, Drori I et al (2012) Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inf Theory 58:1094–1121

    Article  Google Scholar 

  25. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2:183–202

    Article  Google Scholar 

  26. Bredies K, Lorenz DA (2008) Linear convergence of iterative soft-thresholding. J Fourier Anal Appl 14:813–837

    Article  Google Scholar 

  27. Blumensath T, Davies ME (2008) Iterative thresholding for sparse approximations. J Fourier Anal Appl 14:629–654

    Article  Google Scholar 

  28. Herrity KK, Gilbert AC, Tropp JA (2006) Sparse approximation via iterative thresholding. In: Acoustics, speech and signal processing. icassp 2006 proceedings. 2006 ieee international conference on, pp III–III IEEE

    Google Scholar 

  29. Franzmeier N, Buerger K, Teipel S et al (2017) Cognitive reserve moderates the association between functional network anti-correlations and memory in mci. Neurobiol Aging 50:152–162

    Article  PubMed  Google Scholar 

  30. Das SR, Pluta J, Mancuso L et al (2015) Anterior and posterior MTL networks in aging and MCI. Neurobiol Aging 36(Suppl 1):S141.e1–S150.e1

    Google Scholar 

  31. Wilms I, Croux C (2016) Robust sparse canonical correlation analysis. BMC Syst Biol 10:72

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian B. Avants .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Avants, B.B. (2018). Relating High-Dimensional Structural Networks to Resting Functional Connectivity with Sparse Canonical Correlation Analysis for Neuroimaging. In: Spalletta, G., Piras, F., Gili, T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7647-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7647-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7645-4

  • Online ISBN: 978-1-4939-7647-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics