Skip to main content

Developmental Origins of Stress and Psychiatric Disorders

  • Protocol
  • First Online:
Investigations of Early Nutrition Effects on Long-Term Health

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1735))

Abstract

Over the last few decades, evidence has emerged that the pathogenesis of psychiatric disorders such as schizophrenia can involve perturbations of the hypothalamic-pituitary-adrenal (HPA) axis and other neuroendocrine systems. Variations in the manifestation of these effects could be related to differences in clinical symptoms between affected individuals and to differences in treatment response. Such effects can also arise from the complex interaction between genes and environmental factors. Here, we review the effects of maternal stress on abnormalities in HPA axis regulation and the development of psychiatric disorders such as schizophrenia. Studies in this area may prove critical for increasing our understanding of the multidimensional nature of mental disorders and could lead to the development of improved diagnostics and novel therapeutic approaches for treating individuals who suffer from these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580

    Article  CAS  PubMed  Google Scholar 

  2. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601

    Article  CAS  PubMed  Google Scholar 

  3. Bale TL (2015) Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 16:332–344

    Article  CAS  PubMed  Google Scholar 

  4. Wood CE, Walker CD (2015) Fetal and neonatal HPA axis. Compr Physiol 6:33–62

    Article  PubMed  Google Scholar 

  5. Scheinost D, Sinha R, Cross SN, Kwon SH, Sze G, Constable RT et al (2017) Does prenatal stress alter the developing connectome? Pediatr Res 81:214–226

    Article  PubMed  Google Scholar 

  6. Edlow AG (2017) Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenat Diagn 37:95–110

    Article  PubMed  Google Scholar 

  7. Mychasiuk R, Gibb R, Kolb B (2012) Prenatal stress alters dendritic morphology and synaptic connectivity in the prefrontal cortex and hippocampus of developing offspring. Synapse 66:308–314

    Article  CAS  PubMed  Google Scholar 

  8. Lovejoy DA (2005) Stress, arousal and homeostatic challenge. In: Neuroendocrinology, an integrated approach. John Wiley & Sons Ltd, Chichester, pp 243–256. ISBN-10: 0470844329

    Chapter  Google Scholar 

  9. Perry BD, Pollard R (1998) Homeostasis, stress, trauma, and adaptation. A neurodevelopmental view of childhood trauma. Child Adolesc Psychiatr Clin N Am 7:33–51. viii

    CAS  PubMed  Google Scholar 

  10. Tyssen R, Dolatowski FC, Røvik JO, Thorkildsen RF, Ekeberg O, Hem E et al (2007) Personality traits and types predict medical school stress: a six-year longitudinal and nationwide study. Med Educ 41:781–787

    Article  PubMed  Google Scholar 

  11. Stuber ML (1996) Psychiatric sequelae in seriously ill children and their families. Psychiatr Clin North Am 19:481–493

    Article  CAS  PubMed  Google Scholar 

  12. Hickman RL Jr, Douglas SL (2010) Impact of chronic critical illness on the psychological outcomes of family members. AACN Adv Crit Care 21:80–89

    PubMed  PubMed Central  Google Scholar 

  13. Falconier MK, Nussbeck F, Bodenmann G, Schneider H, Bradbury T (2015) Stress from daily hassles in couples: its effects on intradyadic stress, relationship satisfaction, and physical and psychological well-being. J Marital Fam Ther 41:221–235

    Article  PubMed  Google Scholar 

  14. Simmons BL, Nelson DL (2001) Eustress at work: the relationship between hope and health in hospital nurses. Health Care Manage Rev 26:7–18

    Article  CAS  PubMed  Google Scholar 

  15. Harvey SB, Modini M, Joyce S, Milligan-Saville JS, Tan L, Mykletun A et al (2017) Can work make you mentally ill? A systematic meta-review of work-related risk factors for common mental health problems. Occup Environ Med 74:301. https://doi.org/10.1136/oemed-2016-104015. pii: oemed-2016-104015

  16. Arun CP (2007) Fight or flight, forbearance and fortitude: the spectrum of actions of the catecholamines and their cousins. Ann N Y Acad Sci 1018:137–140

    Article  Google Scholar 

  17. Rohleder N, Kirschbaum C (2007) Effects of nutrition on neuro-endocrine stress responses. Curr Opin Clin Nutr Metab Care 10:504–510

    Article  CAS  PubMed  Google Scholar 

  18. Halter JB, Beard JC, Porte D Jr (1984) Islet function and stress hyperglycemia: plasma glucose and epinephrine interaction. Am J Physiol 247:E47–E52

    CAS  PubMed  Google Scholar 

  19. Charil A, Laplante DP, Vaillancourt C, King S (2010) Prenatal stress and brain development. Brain Res Rev 65:56–79

    Article  PubMed  Google Scholar 

  20. Ng PC (2011) Effect of stress on the hypothalamic-pituitary-adrenal axis in the fetus and newborn. J Pediatr 158(2 Suppl):e41–e43

    Article  CAS  PubMed  Google Scholar 

  21. Newby EA, Myers DA, Ducsay CA (2015) Fetal endocrine and metabolic adaptations to hypoxia: the role of the hypothalamic-pituitary-adrenal axis. Am J Physiol Endocrinol Metab 309:E429–E439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seckl JR, Holmes MC (2007) Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat Clin Pract Endocrinol Metab 3:479–488

    Article  CAS  PubMed  Google Scholar 

  23. Wadhwa PD, Porto M, Chicz-DeMet A, Sandman CA (1988) Maternal CRH levels in early third trimester predict length of gestation in human pregnancy. Am J Obstet Gynecol 179:1079–1085

    Article  Google Scholar 

  24. Sandman CA, Wadhwa PD, Glynn L, Chicz-Demet A, Porto M, Garite TJ (1999) Corticotrophin-releasing hormone and fetal responses in human pregnancy. Ann N Y Acad Sci 897:66–75

    Article  CAS  PubMed  Google Scholar 

  25. Wadhwa PD, Sandman CA, Garite TJ (2001) The neurobiology of stress in human pregnancy: implications for prematurity and development of the fetal central nervous system. Prog Brain Res 133:131–142

    Article  CAS  PubMed  Google Scholar 

  26. Kastin AJ, Akerstrom V (2002) Differential interactions of urocortin/corticotropin-releasing hormone peptides with the blood-brain barrier. Neuroendocrinology 75:367–374

    Article  CAS  PubMed  Google Scholar 

  27. Viltart O, Vanbesien-Mailliot CC (2007) Impact of prenatal stress on neuroendocrine programming. ScientificWorldJournal 7:1493–1537

    Article  CAS  PubMed  Google Scholar 

  28. Schneider ML (1992) Delayed object permanence development in prenatally stressed rhesus monkey infants (Macaca mulatta). Occup Ther J Res 12:96–110

    Article  Google Scholar 

  29. Schneider ML, Coe CL (1993) Repeated social stress during pregnancy impairs neuromotor development in the primate infant. J Dev Behav Pediatr 14:81–87

    Article  CAS  PubMed  Google Scholar 

  30. Clarke AS, Schneider ML (1993) Prenatal stress has long-term effects on behavioral responses to stress in juvenile rhesus monkeys. Dev Psychobiol 26:293–304

    Article  CAS  PubMed  Google Scholar 

  31. Clarke AS, Wittwer DJ, Abbott DH, Schneider ML (1994) Long-term effects of prenatal stress on HPA axis activity in juvenile rhesus monkeys. Dev Psychobiol 27:257–269

    Article  CAS  PubMed  Google Scholar 

  32. Linnet KM, Dalsgaard S, Obel C, Wisborg K, Henriksen TB, Rodriguez A et al (2003) Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence. Am J Psychiatry 160:1028–1040

    Article  PubMed  Google Scholar 

  33. Grizenko N, Shayan YR, Polotskaia A, Ter-Stepanian M, Joober R (2008) Relation of maternal stress during pregnancy to symptom severity and response to treatment in children with ADHD. J Psychiatry Neurosci 33:10–16

    PubMed  PubMed Central  Google Scholar 

  34. Li J, Olsen J, Vestergaard M, Obel C (2010) Attention-deficit/hyperactivity disorder in the offspring following prenatal maternal bereavement: a nationwide follow-up study in Denmark. Eur Child Adolesc Psychiatry 19:747–753

    Article  PubMed  Google Scholar 

  35. Huttenen MO, Niskanen P (1978) Prenatal loss of father and psychiatric disorders. Arch Gen Psychiatry 35:429–431

    Article  Google Scholar 

  36. Clarke MC, Harley M, Cannon M (2006) The role of obstetric events in schizophrenia. Schizophr Bull 32:3–8

    Article  PubMed  Google Scholar 

  37. Van Os J, Selten JP (1998) Prenatal exposure to maternal stress and subsequent schizophrenia. The invasion of The Netherlands. Br J Psychiatry 172:324–326

    Article  PubMed  Google Scholar 

  38. Susser E, Neugebauer R, Hoek HW, Brown AS, Lin S, Labovitz D et al (1996) Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry 53:25–31

    Article  CAS  PubMed  Google Scholar 

  39. Hoek HW, Brown AS, Susser E (1998) The Dutch famine and schizophrenia spectrum disorders. Soc Psychiatry Psychiatr Epidemiol 33:373–379

    Article  CAS  PubMed  Google Scholar 

  40. Brown AS, Susser ES (2008) Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull 34:1054–1063

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kahn HS, Graff M, Stein AD, Lumey LH (2009) A fingerprint marker from early gestation associated with diabetes in middle age: the Dutch Hunger Winter Families Study. Int J Epidemiol 38:101–109

    Article  PubMed  Google Scholar 

  42. St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F et al (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. JAMA 294:557–562

    Article  CAS  PubMed  Google Scholar 

  43. Watson JB, Mednick SA, Huttunen M, Wang X (1999) Prenatal teratogens and the development of adult mental illness. Dev Psychopathol 11:457–466

    Article  CAS  PubMed  Google Scholar 

  44. Kinney DK, Miller AM, Crowley DJ, Huang E, Gerber E (2008) Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J Autism Dev Disord 38:481–488

    Article  PubMed  Google Scholar 

  45. Beversdorf DQ, Manning SE, Hillier A, Anderson SL, Nordgren RE, Walters SE et al (2005) Timing of prenatal stressors and autism. J Autism Dev Disord 35:47147–47148

    Article  Google Scholar 

  46. King S, Laplante DP (2005) The effects of prenatal maternal stress on children’s cognitive development: Project Ice Storm. Stress 8:35–45

    Article  PubMed  Google Scholar 

  47. King S, Mancini-Marie A, Brunet A, Walker E, Meaney MJ, Laplante DP (2009) Prenatal maternal stress from a natural disaster predicts dermatoglyphic asymmetry in humans. Dev Psychopathol 21:343–353

    Article  PubMed  Google Scholar 

  48. Laplante DP, Barr RG, Brunet A, Galbaud du Fort G, Meaney ML, Saucier JF et al (2004) Stress during pregnancy affects general intellectual and language functioning in human toddlers. Pediatr Res 56:400–410

    Article  PubMed  Google Scholar 

  49. Laplante DP, Brunet A, Schmitz N, Ciampi A, King S (2008) Project Ice Storm: prenatal maternal stress affects cognitive and linguistic functioning in 5 1/2-year-old children. J Am Acad Child Adolesc Psychiatry 47:1063–1072

    Article  PubMed  Google Scholar 

  50. Talge NM, Neal C, Glover V (2007) Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry 48:245–261

    Article  PubMed  Google Scholar 

  51. Cripps RL, Martin-Gronert MS, Archer ZA, Hales CN, Mercer JG, Ozanne SE (2009) Programming of hypothalamic neuropeptide gene expression in rats by maternal dietary protein content during pregnancy and lactation. Clin Sci (Lond) 117:85–93

    Article  CAS  Google Scholar 

  52. Torres N, Bautista CJ, Tovar AR, Ordáz G, Rodríguez-Cruz M, Ortiz V et al (2010) Protein restriction during pregnancy affects maternal liver lipid metabolism and fetal brain lipid composition in the rat. Am J Physiol Endocrinol Metab 298:E270–E277

    Article  CAS  PubMed  Google Scholar 

  53. Palmer AA, Printz DJ, Butler PD, Dulawa SC, Printz MP (2004) Prenatal protein deprivation in rats induces changes in prepulse inhibition and NMDA receptor binding. Brain Res 996:193–201

    Article  CAS  PubMed  Google Scholar 

  54. Palmer AA, Brown AS, Keegan D, Siska LD, Susser E, Rotrosen J et al (2008) Prenatal protein deprivation alters dopamine-mediated behaviors and dopaminergic and glutamatergic receptor binding. Brain Res 1237:62–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Csomor PA, Yee BK, Feldon J, Theodoridou A, Studerus E, Vollenweider VX (2009) Impaired prepulse inhibition and prepulse-elicited reactivity but intact reflex circuit excitability in unmedicated schizophrenia patients: a comparison with healthy subjects and medicated schizophrenia patients. Schizophr Bull 35:244–255

    Article  PubMed  Google Scholar 

  56. Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32:1073–1086

    Article  CAS  PubMed  Google Scholar 

  57. Deminière JM, Piazza PV, Guegan G, Abrous N, Maccari S, Le Moal M et al (1992) Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers. Brain Res 586:135–139

    Article  PubMed  Google Scholar 

  58. Uno H, Tarara R, Else J, Sulemen M, Sapolsky RM (1989) Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci 9:1705–1711

    CAS  PubMed  Google Scholar 

  59. Uno H, Lohmiller L, Thieme C, Kemnitz JW, Engle MJ, Roecker EB et al (1990) Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques, 1. Hippocampus. Dev Brain Res 53:157–167

    Article  CAS  Google Scholar 

  60. Kerchner M, Ward IL (1992) SDN-MPOA volume in male rats is decreased by prenatal stress, but is not related to ejaculatory behavior. Brain Res 581:244–251

    Article  CAS  PubMed  Google Scholar 

  61. Uno H, Eisele S, Sakai A, Shelton S, Baker E, DeJesus O et al (1994) Neurotoxicity of glucocorticoids in the primate brain. Horm Behav 28:336–348

    Article  CAS  PubMed  Google Scholar 

  62. Anderson DK, Rhees RW, Fleming DE (1995) Effects of prenatal stress on differentiation of the sexually dimorphic nucleus of the preoptic area (SDN-POA) of the rat brain. Brain Res 332:113–118

    Article  Google Scholar 

  63. Poland RE, Cloak C, Lutchmansingh PJ, McCracken JT, Chang L, Ernst T (1999) Brain N-acetyl aspartate concentrations measured by H MRS are reduced in adult male rats subjected to perinatal stress: preliminary observations and hypothetical implications for neurodevelopmental disorders. J Psychiatr Res 33:41–51

    Article  CAS  PubMed  Google Scholar 

  64. Schmitz C, Rhodes ME, Bludau M, Kaplan S, Ong P, Ueffing I et al (2002) Depression: reduced number of granule cells in the hippocampus of female, but not male, rats due to prenatal restraint stress. Mol Psychiatry 7:810–813

    Article  CAS  PubMed  Google Scholar 

  65. Coe CL, Lulbach GR, Schneider M (2002) Prenatal disturbance alters the size of the corpus callosum in young monkeys. Dev Psychobiol 41:178–185

    Article  PubMed  Google Scholar 

  66. Coe CL, Kramer M, Czéh B, Gould E, Reeves AJ, Kirschbaum C et al (2003) Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol Psychiatry 54:1025–1034

    Article  CAS  PubMed  Google Scholar 

  67. Salm AK, Pavelko M, Krouse EM, Webster W, Kraszpulski M, Birkle DL (2004) Lateral amygdaloid nucleus expansion in adult rats is associated with exposure to prenatal stress. Brain Res Dev Brain Res 148:159–167

    Article  CAS  PubMed  Google Scholar 

  68. Kraszpulski M, Dickerson PA, Salm AK (2006) Prenatal stress affects the developmental trajectory of the rat amygdala. Stress 9:85–95

    Article  PubMed  Google Scholar 

  69. Kawamura T, Chen J, Takahashi T, Ichitani Y, Nakahara D (2006) Prenatal stress suppresses cell proliferation in the early developing brain. Neuroreport 17:1515–1518

    Article  CAS  PubMed  Google Scholar 

  70. Barros VG, Duhalde-Vega M, Caltana L, Brusco A, Antonelli MC (2006) Astrocyte-neuron vulnerability to prenatal stress in the adult rat brain. J Neurosci Res 83:787–800

    Article  CAS  PubMed  Google Scholar 

  71. Ulupinar E, Yucel F (2005) Prenatal stress reduces interneuronal connectivity in the rat cerebellar granular layer. Neurotoxicol Teratol 27:475–484

    Article  CAS  PubMed  Google Scholar 

  72. Ulupinar E, Yucel F, Ortug G (2006) The effects of prenatal stress on the Purkinje cell neurogenesis. Neurotoxicol Teratol 28:86–94

    Article  CAS  PubMed  Google Scholar 

  73. Lee YA, Goto Y (2013) The effects of prenatal and postnatal environmental interaction: prenatal environmental adaptation hypothesis. J Physiol Paris 107:483–492

    Article  PubMed  Google Scholar 

  74. Gillies GE, Virdee K, Pienaar I, Al-Zaid F, Dalley JW (2016) Enduring, sexually dimorphic impact of in utero exposure to elevated levels of glucocorticoids on midbrain dopaminergic populations. Brain Sci 7(1):pii: E5. https://doi.org/10.3390/brainsci7010005

    Article  Google Scholar 

  75. Egaas B, Courchesne E, Saitoh O (1995) Reduced size of corpus callosum in autism. Arch Neurol 52:794–801

    Article  CAS  PubMed  Google Scholar 

  76. Innocenti GM, Ansermet F, Parnas J (2003) Schizophrenia, neurodevelopment and corpus callosum. Mol Psychiatry 8:261–274

    Article  CAS  PubMed  Google Scholar 

  77. Seidman LJ, Valera EM, Makris N (2005) Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1263–1272

    Article  PubMed  Google Scholar 

  78. Guest PC (2017) Biomarkers and mental illness: it’s not all in the mind. copernicus, 1st edn. Göttingen, Germany. ISBN-10: 3319460870

    Book  Google Scholar 

  79. Lemaire V, Koehl M, Le Moal M, Abrous DN (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci U S A 97:11032–11037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li H, Li X, Jia N, Cai Q, Bai Z, Chen R et al (2008) NF-kappaB regulates prenatal stress-induced cognitive impairment in offspring rats. Behav Neurosci 122:331–339

    Article  CAS  PubMed  Google Scholar 

  81. Gonzalez-Perez O, Gutiérrez-Smith Y, Guzmán-Muñiz J, Moy-López NA (2011) Intrauterine stress impairs spatial learning in the progeny of Wistar rats. Rev Invest Clin 63:279–286

    PubMed  Google Scholar 

  82. Li N, Wang Y, Zhao X, Gao Y, Song M, Yu L et al (2015) Long-term effect of early-life stress from earthquake exposure on working memory in adulthood. Neuropsychiatr Dis Treat 11:2959–2965

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bennett GA, Palliser HK, Walker D, Hirst J (2016) Severity and timing: how prenatal stress exposure affects glial developmental, emotional behavioural and plasma neurosteroid responses in guinea pig offspring. Psychoneuroendocrinology 70:47–57

    Article  CAS  PubMed  Google Scholar 

  84. Ward HE, Johnson EA, Salm AK, Birkle DL (2000) Effects of prenatal stress on defensive withdrawal behavior and corticotropin releasing factor systems in rat brain. Physiol Behav 70:359–366

    Article  CAS  PubMed  Google Scholar 

  85. Bygren LO (2013) Intergenerational health responses to adverse and enriched environments. Annu Rev Public Health 34:49–60

    Article  PubMed  Google Scholar 

  86. Liu GT, Dancause KN, Elgbeili G, Laplante DP, King S (2016) Disaster-related prenatal maternal stress explains increasing amounts of variance in body composition through childhood and adolescence: Project Ice Storm. Environ Res 150:1–7

    Article  CAS  PubMed  Google Scholar 

  87. Bayer SA, Altman J, Russo RJ, Zhang X (1993) Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14:83–144

    CAS  PubMed  Google Scholar 

  88. Van Oel CJ, Baare WF, Hulshoff Pol HE, Haag J, Balazs J, Dingemans A et al (2001) Differentiating between low and high susceptibility to schizophrenia in twins: the significance of dermatoglyphic indices in relation to other determinants of brain development. Schizophr Res 52:181–193

    Article  PubMed  Google Scholar 

  89. Izquierdo I, Furini CR, Myskiw JC (2016) Fear memory. Physiol Rev 96:695–750

    Article  PubMed  Google Scholar 

  90. Conrad CD, Galea LAM, Kuroda Y, McEwen BS (1996) Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine treatment. Behav Neurosci 110:1321–1334

    Article  CAS  PubMed  Google Scholar 

  91. Fenoglio KA, Brunson KL, Baram TZ (2006) Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Front Neuroendocrinol 27:180–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marin MF, Lord C, Andrews J, Juster RP, Sindi S, Arsenault-Lapierre G et al (2011) Chronic stress, cognitive functioning and mental health. Neurobiol Learn Mem 96:583–595

    Article  PubMed  Google Scholar 

  93. Slavich GM (2016) Life stress and health: a review of conceptual issues and recent findings. Teach Psychol 43:346–355

    Article  PubMed  PubMed Central  Google Scholar 

  94. Newsome CA, Shiell AW, Fall CH, Phillips DI, Shier R, Law CM (2003) Is birth weight related to later glucose and insulin metabolism? A systematic review. Diabet Med 20:339–348

    Article  CAS  PubMed  Google Scholar 

  95. Entringer S, Wüst S, Kumsta R, Layes IM, Nelson EL, Hellhammer DH et al (2008) Prenatal psychosocial stress exposure is associated with insulin resistance in young adults. Am J Obstet Gynecol 199:498.e1–498.e7

    Article  Google Scholar 

  96. Entringer S, Kumsta R, Hellhammer DH, Wadhwa PD, Wüst S (2009) Prenatal exposure to maternal psychosocial stress and HPA axis regulation in young adults. Horm Behav 55:292–298

    Article  CAS  PubMed  Google Scholar 

  97. Silberman DM, Acosta GB, Zorrilla Zubilete MA (2016) Long-term effects of early life stress exposure: role of epigenetic mechanisms. Pharmacol Res 109:64–73

    Article  CAS  PubMed  Google Scholar 

  98. Lesage J, Del-Favero F, Leonhardt M, Louvart H, Maccari S, Vieau D et al (2004) Prenatal stress induces intrauterine growth restriction and programmes glucose intolerance and feeding behaviour disturbances in the aged rat. J Endocrinol 81:291–296

    Article  Google Scholar 

  99. De Blasio MJ, Dodic M, Jefferies AJ, Moritz KM, Wintour EM, Owens JA (2007) Maternal exposure to dexamethasone or cortisol in early pregnancy differentially alters insulin secretion and glucose homeostasis in adult male sheep offspring. Am J Physiol Endocrinol Metab 293:E75–E82

    Article  PubMed  Google Scholar 

  100. Guest PC, Martins-de-Souza D, Vanattou-Saifoudine N, Harris LW, Bahn S (2011) Abnormalities in metabolism and hypothalamic-pituitary-adrenal axis function in schizophrenia. Int Rev Neurobiol 101:145–168

    Article  CAS  PubMed  Google Scholar 

  101. Steiner J, Guest PC, Rahmoune H, Martins-de-Souza D (2017) The application of multiplex biomarker techniques for improved stratification and treatment of schizophrenia patients. Methods Mol Biol 1546:19–35

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Guest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guest, F.L., Guest, P.C. (2018). Developmental Origins of Stress and Psychiatric Disorders. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7614-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7613-3

  • Online ISBN: 978-1-4939-7614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics