Skip to main content

Diagnostic Imaging of Knee Cartilage Injury: Evaluation and Assessment

  • Chapter
  • First Online:
Articular Cartilage of the Knee

Abstract

Articular cartilage is structurally complex tissue, and its injuries vary from chondromalacia to complete denudation. This chapter highlights the technical considerations, normal imaging anatomy of the articular cartilage on MRI and appearances of the wide spectrum of injury related pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felson DT. Clinical practice. Osteoarthritis of the knee. N Engl J Med. 2006;354(8):841–8.

    Article  CAS  PubMed  Google Scholar 

  2. Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States Part I. Arthritis Rheum. 2008;58(1):15–25.

    Article  PubMed  Google Scholar 

  3. Cashman G, Attariwala R. Influence of MRI field strength on clinical decision making in knee cartilage injury – a case study. J Can Chiropr Assoc. 2014;58(4):395–400.

    PubMed  PubMed Central  Google Scholar 

  4. Andreisek G, Weiger M. T2* mapping of articular cartilage: current status of research and first clinical applications. Investig Radiol. 2014;49(1):57–62.

    Article  Google Scholar 

  5. Chang G, Diamond M, Nevsky G, Regatte RR, Weiss DS. Early knee changes in dancers identified by ultra-high-field 7 T MRI. Scand J Med Sci Sports. 2014;24(4):678–82.

    Article  CAS  PubMed  Google Scholar 

  6. Jordan CD, Saranathan M, Bangerter NK, Hargreaves BA, Gold GE. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast. Eur J Radiol. 2013;82(5):734–9.

    Article  PubMed  Google Scholar 

  7. Wyss M, Manoliu A, Marcon M, Spinner G, Luechinger R, et al. Clinical magnetic resonance imaging of the knee at 7 T: optimization of fat suppression. Invest Radiol. 2019;54(3):160–68.

    Google Scholar 

  8. Meachim G, Bentley G, Baker R. Effect of age on thickness of adult patellar articular cartilage. Ann Rheum Dis. 1977;36(6):563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Faber SC, Eckstein F, Lukasz S, Muhlbauer R, Hohe J, Englmeier KH, et al. Gender differences in knee joint cartilage thickness, volume and articular surface areas: assessment with quantitative three-dimensional MR imaging. Skelet Radiol. 2001;30(3):144–50.

    Article  CAS  Google Scholar 

  10. Xia Y, Farquhar T, Burton-Wurster N, Lust G. Origin of cartilage laminae in MRI. J Magn Reson Imaging. 1997;7(5):887–94.

    Article  CAS  PubMed  Google Scholar 

  11. Waldschmidt JG, Rilling RJ, Kajdacsy-Balla AA, Boynton MD, Erickson SJ. In vitro and in vivo MR imaging of hyaline cartilage: zonal anatomy, imaging pitfalls, and pathologic conditions. Radiographics. 1997;17(6):1387–402.

    Google Scholar 

  12. Rubenstein JD, Kim JK, Morova-Protzner I, Stanchev PL, Henkelman RM. Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage. Radiology. 1993;188(1):219–26.

    Article  CAS  PubMed  Google Scholar 

  13. Gray ML, Burstein D. Molecular (and functional) imaging of articular cartilage. J Musculoskelet Neuronal Interact. 2004;4(4):365–8.

    CAS  PubMed  Google Scholar 

  14. Ronga M, Angeretti G, Ferraro S, DEF G, Genovese EA, Cherubino P. Imaging of articular cartilage: current concepts. Joints. 2014;2(3):137–40.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kalke RJ, Di Primio GA, Schweitzer ME. MR and CT arthrography of the knee. Semin Musculoskelet Radiol. 2012;16(1):57–68.

    Article  PubMed  Google Scholar 

  16. Bley TA, Wieben O, Francois CJ, Brittain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging. 2010;31(1):4–18.

    Article  PubMed  Google Scholar 

  17. Link TM, Stahl R, Woertler K. Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol. 2007;17(5):1135–46.

    Article  PubMed  Google Scholar 

  18. Notohamiprodjo M, Horng A, Pietschmann MF, Muller PE, Horger W, Park J, et al. MRI of the knee at 3T: first clinical results with an isotropic PDfs-weighted 3D-TSE-sequence. Investig Radiol. 2009;44(9):585–97.

    Article  Google Scholar 

  19. Roemer FW, Hunter DJ, Guermazi A. MRI-based semiquantitative assessment of subchondral bone marrow lesions in osteoarthritis research. Osteoarthritis Cartilage. 2009;17(3):414–5. author reply 416-7

    Article  CAS  PubMed  Google Scholar 

  20. Disler DG, McCauley TR, Wirth CR, Fuchs MD. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol. 1995;165(2):377–82.

    Article  CAS  PubMed  Google Scholar 

  21. Moriya S, Miki Y, Yokobayashi T, Ishikawa M. Three-dimensional double-echo steady-state (3D-DESS) magnetic resonance imaging of the knee: contrast optimization by adjusting flip angle. Acta Radiol. 2009;50(5):507–11.

    Article  CAS  PubMed  Google Scholar 

  22. Eckstein F, Hudelmaier M, Wirth W, Kiefer B, Jackson R, Yu J, et al. Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 tesla: a pilot study for the osteoarthritis initiative. Ann Rheum Dis. 2006;65(4):433–41.

    Article  CAS  PubMed  Google Scholar 

  23. Gold GE, Hargreaves BA, Vasanawala SS, Webb JD, Shimakawa AS, Brittain JH, et al. Articular cartilage of the knee: evaluation with fluctuating equilibrium MR imaging--initial experience in healthy volunteers. Radiology. 2006;238(2):712–8.

    Article  PubMed  Google Scholar 

  24. Lu A, Barger AV, Grist TM, Block WF. Improved spectral selectivity and reduced susceptibility in SSFP using a near zero TE undersampled three-dimensional PR sequence. J Magn Reson Imaging. 2004;19(1):117–23.

    Article  PubMed  Google Scholar 

  25. Maroudas A, Muir H, Wingham J. The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim Biophys Acta. 1969;177(3):492–500.

    Article  CAS  PubMed  Google Scholar 

  26. Burstein D, Gray M, Mosher T, Dardzinski B. Measures of molecular composition and structure in osteoarthritis. Radiol Clin N Am. 2009;47(4):675–86.

    Article  PubMed  Google Scholar 

  27. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232(2):592–8.

    Article  PubMed  Google Scholar 

  28. Duvvuri U, Charagundla SR, Kudchodkar SB, Kaufman JH, Kneeland JB, Rizi R, et al. Human knee: in vivo T1(rho)-weighted MR imaging at 1.5 T--preliminary experience. Radiology. 2001;220(3):822–6.

    Article  CAS  PubMed  Google Scholar 

  29. Stahl R, Luke A, Li X, Carballido-Gamio J, Ma CB, Majumdar S, et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients--a 3.0-tesla MRI study. Eur Radiol. 2009;19(1):132–43.

    Article  PubMed  Google Scholar 

  30. Wang L, Regatte RR. T(1)rho MRI of human musculoskeletal system. J Magn Reso Imaging. 2015;41(3):586–600.

    Google Scholar 

  31. Schmitt B, Zbyn S, Stelzeneder D, Jellus V, Paul D, Lauer L, et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology. 2011;260(1):257–64.

    Article  PubMed  Google Scholar 

  32. Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum. 2005;52(11):3528–35.

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, Regatte RR. Quantitative mapping of human cartilage at 3.0T: parallel changes in T(2), T(1)rho, and dGEMRIC. Acad Radiol. 2014;21(4):463–71.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bengtsson Mostrom E, Lammentausta E, Finnbogason T, Weidenhielm L, Janarv PM, Tiderius CJ. Pre- and postcontrast T1 and T2 mapping of patellar cartilage in young adults with recurrent patellar dislocation. Magn Reson Med. 2015;74(5):1363–9.

    Google Scholar 

  35. Bekkers JE, Bartels LW, Benink RJ, Tsuchida AI, Vincken KL, Dhert WJ, et al. Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) can be effectively applied for longitudinal cohort evaluation of articular cartilage regeneration. Osteoarthritis Cartilage. 2013;21(7):943–9.

    Google Scholar 

  36. Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 2008;105(7):2266–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology. 2013;267(2):503–13.

    Article  PubMed  Google Scholar 

  38. Koller U, Apprich S, Domayer S, Windhager R, Trattnig S. Magnetic resonance mapping of the rim of articular cartilage defects of the patella. Int Orthop. 2014;38(1):67–72.

    Article  PubMed  Google Scholar 

  39. Bae WC, Dwek JR, Znamirowski R, Statum SM, Hermida JC, D’Lima DD, et al. Ultrashort echo time MR imaging of osteochondral junction of the knee at 3 T: identification of anatomic structures contributing to signal intensity. Radiology. 2010;254(3):837–45.

    Google Scholar 

  40. Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr. 2003;27(6):825–46.

    Article  PubMed  Google Scholar 

  41. Mamisch TC, Menzel MI, Welsch GH, Bittersohl B, Salomonowitz E, Szomolanyi P, et al. Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 tesla--preliminary results. Eur J Radiol. 2008;65(1):72–9.

    Article  PubMed  Google Scholar 

  42. Raya JG. Techniques and applications of in vivo diffusion imaging of articular cartilage. J Magn Reson Imaging. 2015;41(6):1487–504.

    Google Scholar 

  43. Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F. Subchondral bone and cartilage disease: a rediscovered functional unit. Investig Radiol. 2000;35(10):581–8.

    Article  CAS  Google Scholar 

  44. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage. 2006;14(1):13–29.

    Article  CAS  PubMed  Google Scholar 

  45. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177–90.

    Article  CAS  PubMed  Google Scholar 

  46. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS Boston Leeds osteoarthritis knee score. Ann Rheum Dis. 2008;67(2):206–11.

    Article  CAS  PubMed  Google Scholar 

  47. Kornaat PR, Ceulemans RY, Kroon HM, Riyazi N, Kloppenburg M, Carter WO, et al. MRI assessment of knee osteoarthritis: knee osteoarthritis scoring system (KOSS)--inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skelet Radiol. 2005;34(2):95–102.

    Article  Google Scholar 

  48. Obedian RS, Grelsamer RP. Osteochondritis dissecans of the distal femur and patella. Clin Sports Med. 1997;16(1):157–74.

    Article  CAS  PubMed  Google Scholar 

  49. Zanon G, Div G, Marullo M. Osteochondritis dissecans of the knee. Joints. 2014;2(1):29–36.

    PubMed  PubMed Central  Google Scholar 

  50. Heilmeier U, Wamba JM, Joseph GB, Darakananda K, Callan J, et al. Baseline knee joint effusion and medial femoral bone marrow edema, in addition to MRI-based T2 relaxation time and texture measurements of knee cartilage, can help predict incident total knee arthroplasty 4–7 years later: data from the Osteoarthritis Initiative. Skeletal Radiol. 2019;48(1):89–101.

    Google Scholar 

  51. Neumann J, Guimaraes JB, Heilmeier U, Joseph GB, Nevitt MC, et al. Diabetics show accelerated progression of knee cartilage and meniscal lesions: data from the osteoarthritis initiative. Skeletal Radiol. 2019;48(6):919–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaurav K. Thawait MBBS, MD or Avneesh B. Chhabra MBBS, MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thawait, G.K., Andreisek, G., Chhabra, A.B. (2020). Diagnostic Imaging of Knee Cartilage Injury: Evaluation and Assessment. In: Gahunia, H., Gross, A., Pritzker, K., Babyn, P., Murnaghan, L. (eds) Articular Cartilage of the Knee. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7587-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7587-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7585-3

  • Online ISBN: 978-1-4939-7587-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics