Skip to main content

Generation of Intramolecular FRET Probes via Noncanonical Amino Acid Mutagenesis

  • Protocol
  • First Online:
Noncanonical Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1728))

Abstract

Förster resonance energy transfer (FRET) probes are powerful tools to monitor protein–protein interactions and enzyme activities in a spatiotemporal manner in live cells. Using a combination of noncanonical amino acid (ncAA) mutagenesis and bioorthogonal labeling, we have developed intramolecular FRET probes consisting of a fluorescent protein and an organic dye within an individual protein. Herein we present a general approach to establish intramolecular FRET probes for imaging of protein activity in live cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodriguez EA, Campbell RE, Lin JY et al (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42(2):111–129

    Article  CAS  PubMed  Google Scholar 

  2. Pertz O, Hahn KM (2004) Designing biosensors for Rho family proteins--deciphering the dynamics of Rho family GTPase activation in living cells. J Cell Sci 117:1313–1318

    Article  CAS  PubMed  Google Scholar 

  3. Komatsu N, Aoki K, Yamada M et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ueda Y, Kwok S, Hayashi Y (2013) Application of FRET probes in the analysis of neuronal plasticity. Front Neural Circuits 7:163

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sabet O, Stockert R, Xouri G et al (2015) Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Nat Commun 6:8047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen X, Li F, Wu YW (2015) Chemical labeling of intracellular proteins via affinity conjugation and strain-promoted cycloadditions in live cells. Chem Commun (Camb) 51:16537–16540

    Article  CAS  Google Scholar 

  7. Chen X, Wu YW (2016) Selective chemical labeling of proteins. Org Biomol Chem 14:5417–5439

    Article  CAS  PubMed  Google Scholar 

  8. Liu W, Li F, Chen X et al (2014) A rapid and fluorogenic TMP-AcBOPDIPY probe for covalent labeling of proteins in live cells. J Am Chem Soc 136:4468–4471

    Article  CAS  PubMed  Google Scholar 

  9. Voss S, Zhao L, Chen X et al (2014) Generation of an intramolecular three-color fluorescence resonance energy transfer probe by site-specific protein labeling. J Pept Sci 20:115–120

    Article  CAS  PubMed  Google Scholar 

  10. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48:6974–6998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu YW, Goody RS (2010) Probing protein function by chemical modification. J Pept Sci 16:514–523

    Article  CAS  PubMed  Google Scholar 

  12. Voss S, Kruger DM, Koch O et al (2016) Spatiotemporal imaging of small GTPases activity in live cells. Proc Natl Acad Sci U S A 113:14348–14353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lang K, Chin JW (2014) Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 114:4764–4806

    Article  CAS  PubMed  Google Scholar 

  14. Lang K, Chin JW (2014) Bioorthogonal reactions for labeling proteins. ACS Chem Biol 9:16–20

    Article  CAS  PubMed  Google Scholar 

  15. Nikic I, Plass T, Schraidt O et al (2014) Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew Chem Int Ed Engl 53:2245–2249

    Article  CAS  PubMed  Google Scholar 

  16. Lang K, Davis L, Wallace S et al (2012) Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. J Am Chem Soc 134:10317–10320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu DS, Tangpeerachaikul A, Selvaraj R et al (2012) Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells. J Am Chem Soc 134:792–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uttamapinant C, Howe JD, Lang K et al (2015) Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J Am Chem Soc 137:4602–4605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang W, Takimoto JK, Louie GV et al (2007) Genetically encoding unnatural amino acids for cellular and neuronal studies. Nat Neurosci 10:1063–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang H, Constantine R, Frederick JM et al (2012) The prenyl-binding protein PrBP/delta: a chaperone participating in intracellular trafficking. Vis Res 75:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Plass T, Milles S, Koehler C et al (2012) Amino acids for Diels-Alder reactions in living cells. Angew Chem Int Ed Engl 51:4166–4170

    Article  CAS  PubMed  Google Scholar 

  22. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96:11241–11246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagai T, Sawano A, Park ES et al (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98:3197–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walther KA, Papke B, Sinn MB et al (2011) Precise measurement of protein interacting fractions with fluorescence lifetime imaging microscopy. Mol BioSyst 7:322–336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Deutsche Forschungsgemeinschaft, DFG (grant No.: SPP 1623), European Research Council, ERC (ChemBioAP), and Behrens-Weise-Stifung. S.B. acknowledges support from the IMPRS-CMB. We thank Edward Lemke and Carsten Schultz for the kind gift of PylRS AF plasmid and BCN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Wen Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brand, S., Wu, YW. (2018). Generation of Intramolecular FRET Probes via Noncanonical Amino Acid Mutagenesis. In: Lemke, E. (eds) Noncanonical Amino Acids. Methods in Molecular Biology, vol 1728. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7574-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7574-7_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7573-0

  • Online ISBN: 978-1-4939-7574-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics