Skip to main content

Approximation in the Closed Unit Ball

  • Chapter
  • First Online:
New Trends in Approximation Theory

Part of the book series: Fields Institute Communications ((FIC,volume 81))

  • 500 Accesses

Abstract

In this expository article, we present a number of classic theorems that serve to identify the closure in the sup-norm of various sets of Blaschke products, inner functions and their quotients, as well as the closure of the convex hulls of these sets. The results presented include theorems of Carathéodory, Fisher, Helson–Sarason, Frostman, Adamjan–Arov–Krein, Douglas–Rudin and Marshall. As an application of some of these ideas, we obtain a simple proof of the Berger–Stampfli spectral mapping theorem for the numerical range of an operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamjan, V.M., Arov, D.Z., Kreı̆n, M.G.: Infinite Hankel matrices and generalized Carathéodory-Fejér and I. Schur problems. Funkcional. Anal. i Priložen. 2(4), 1–17 (1968).

    Google Scholar 

  2. Adamjan, V.M., Arov, D.Z., Kreı̆n, M.G.: Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz. Funkcional. Anal. i Priložen. 2(1), 1–19 (1968).

    Google Scholar 

  3. Adamjan, V.M., Arov, D.Z., Kreı̆n, M.G.: Infinite Hankel block matrices and related problems of extension. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6(2–3), 87–112 (1971).

    Google Scholar 

  4. Berger, C.A., Stampfli, J.G.: Mapping theorems for the numerical range. Amer. J. Math. 89, 1047–1055 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  5. Douglas, R.G., Rudin, W.: Approximation by inner functions. Pacific J. Math. 31, 313–320 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  6. Drury, S.W.: Symbolic calculus of operators with unit numerical radius. Linear Algebra Appl. 428(8–9), 2061–2069 (2008). DOI 10.1016/j.laa.2007.11.007. URL http://dx.doi.org.acces.bibl.ulaval.ca/10.1016/j.laa.2007.11.007.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fatou, P.: Sur les fonctions holomorphes et bornées à l’intérieur d’un cercle. Bull. Soc. Math. France 51, 191–202 (1923).

    Article  MathSciNet  MATH  Google Scholar 

  8. Fisher, S.: The convex hull of the finite Blaschke products. Bull. Amer. Math. Soc. 74, 1128–1129 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  9. Frostman, O.: Sur les produits de Blaschke. Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Proc. Roy. Physiog. Soc. Lund] 12(15), 169–182 (1942).

    Google Scholar 

  10. Garnett, J.B.: Bounded analytic functions, Graduate Texts in Mathematics, vol. 236, first edn. Springer, New York (2007).

    Google Scholar 

  11. Helson, H., Sarason, D.: Past and future. Math. Scand 21, 5–16 (1968) (1967).

    Google Scholar 

  12. Klaja, H., Mashreghi, J., Ransford, T.: On mapping theorems for numerical range. Proc. Amer. Math. Soc. 144(7), 3009–3018 (2016). DOI 10.1090/proc/12955. URL http://dx.doi.org.acces.bibl.ulaval.ca/10.1090/proc/12955.

    Article  MathSciNet  MATH  Google Scholar 

  13. Koosis, P.: Introduction to H p spaces, Cambridge Tracts in Mathematics, vol. 115, second edn. Cambridge University Press, Cambridge (1998). With two appendices by V. P. Havin [Viktor Petrovich Khavin].

    Google Scholar 

  14. Marshall, D.E.: Blaschke products generate H . Bull. Amer. Math. Soc. 82(3), 494–496 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  15. Pearcy, C.: An elementary proof of the power inequality for the numerical radius. Michigan Math. J. 13, 289–291 (1966).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Javad Mashreghi was supported by a grant from NSERC. Thomas Ransford was supported by grants from NSERC and the Canada research chairs program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ransford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mashreghi, J., Ransford, T. (2018). Approximation in the Closed Unit Ball. In: Mashreghi, J., Manolaki, M., Gauthier, P. (eds) New Trends in Approximation Theory. Fields Institute Communications, vol 81. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7543-3_5

Download citation

Publish with us

Policies and ethics