Skip to main content

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1608 Accesses

Abstract

Recent interest has focused on the microbiome modulating immune responses, and thus playing a significant role in the development of many diseases, including allergic responses. “Dysbiosis,” alteration in the normal microbiome, does have an effect on inflammation and may also influence the course of the disease. In this chapter, we discuss the influence of the microbiome on common pediatric allergic diseases: food allergy, atopic dermatitis, asthma, and allergic rhinitis. These diseases stem from common immune mechanisms, and are part of a progressive “Atopic March” phenomenon, which will be introduced in this chapter. We explain how the microbiome is related to allergic diseases in both human and murine studies. Studying the microbiome in the context of allergic diseases has the potential to elucidate ways of manipulating the microbiome in disease in general. With further studies in the field, we may be able to modulate the immune response and the disease course by understanding the relationship between the microbiome and the immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsson TR et al (2014) Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 44(6):842–850

    Article  CAS  PubMed  Google Scholar 

  • Akbari O et al (2006) CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N Engl J Med 354(11):1117–1129

    Article  CAS  PubMed  Google Scholar 

  • Apfelbacher CJ, Diepgen TL, Schmitt J (2011) Determinants of eczema: population-based cross-sectional study in Germany. Allergy 66(2):206–213

    Article  CAS  PubMed  Google Scholar 

  • Arpaia N et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrieta MC et al (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7(307):307ra152

    Article  PubMed  CAS  Google Scholar 

  • Atarashi K et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341

    Article  CAS  PubMed  Google Scholar 

  • Atarashi K et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500(7461):232–236

    Article  CAS  PubMed  Google Scholar 

  • Azad MB et al (2015) Infant gut microbiota and food sensitization: associations in the first year of life. Clin Exp Allergy 45(3):632–643

    Article  CAS  PubMed  Google Scholar 

  • Azad MB et al (2016) Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG 123(6):983–993

    Article  CAS  PubMed  Google Scholar 

  • Backhed F et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17(5):690–703

    Article  PubMed  CAS  Google Scholar 

  • Ball TM et al (2000) Siblings, day-care attendance, and the risk of asthma and wheezing during childhood. N Engl J Med 343(8):538–543

    Article  CAS  PubMed  Google Scholar 

  • Bantz SK, Zhu Z, Zheng T (2014) The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. J Clin Cell Immunol 5(2). https://doi.org/10.4172/2155-9899.1000202

  • Bashir ME et al (2004) Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol 172(11):6978–6987

    Article  CAS  PubMed  Google Scholar 

  • Benito D et al (2015) Characterization of Staphylococcus aureus strains isolated from faeces of healthy neonates and potential mother-to-infant microbial transmission through breastfeeding. FEMS Microbiol Ecol 91(3). https://doi.org/10.1093/femsec/fiv007

  • Benson MJ et al (2007) All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 204(8):1765–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biasucci G et al (2010) Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev 86(Suppl 1):13–15

    Article  PubMed  Google Scholar 

  • Bisgaard H et al (2007) Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 357(15):1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Brauweiler AM, Goleva E, Leung DY (2014) Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). J Invest Dermatol 134(8):2114–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AJ et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278(13):11312–11319

    Article  CAS  PubMed  Google Scholar 

  • Brozek JL et al (2010) Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol 126(3):466–476

    Article  PubMed  Google Scholar 

  • Cacho NT, Lawrence RM (2017) Innate immunity and breast milk. Front Immunol 8:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan LS, Robinson N, Xu L (2001) Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis. J Invest Dermatol 117(4):977–983

    Article  CAS  PubMed  Google Scholar 

  • Charlson ES et al (2011) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184(8):957–963

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L et al (2004) Early up-regulation of Th2 cytokines and late surge of Th1 cytokines in an atopic dermatitis model. Clin Exp Immunol 138(3):375–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chng KR et al (2016) Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol 1(9):16106

    Article  CAS  PubMed  Google Scholar 

  • Choi CH et al (2014) Seasonal allergic rhinitis affects sinonasal microbiota. Am J Rhinol Allergy 28(4):281–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Choo JM et al (2017) Divergent relationships between fecal microbiota and metabolome following distinct antibiotic-induced disruptions. mSphere 2(1). https://doi.org/10.1128/mSphere.00005-17

  • Coombes JL et al (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204(8):1757–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David LA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563

    Article  CAS  PubMed  Google Scholar 

  • Depner M et al (2017) Bacterial microbiota of the upper respiratory tract and childhood asthma. J Allergy Clin Immunol 139(3):826–34.e13

    Article  PubMed  Google Scholar 

  • Dickson RP et al (2016) The microbiome and the respiratory tract. Annu Rev Physiol 78:481–504

    Article  CAS  PubMed  Google Scholar 

  • Dickson RP et al (2017) Bacterial topography of the healthy human lower respiratory tract. MBio 8(1). https://doi.org/10.1128/mBio.02287-16

  • Dominguez-Bello MG et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107(26):11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  • Erb-Downward JR et al (2011) Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One 6(2):e16384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyerich K et al (2009) IL-17 in atopic eczema: linking allergen-specific adaptive and microbial-triggered innate immune response. J Allergy Clin Immunol 123(1):59–66.e4

    Article  CAS  PubMed  Google Scholar 

  • Fallani M et al (2010) Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 51(1):77–84

    Article  PubMed  Google Scholar 

  • Faria AM, Weiner HL (1999) Oral tolerance: mechanisms and therapeutic applications. Adv Immunol 73:153–264

    Article  CAS  PubMed  Google Scholar 

  • Flohr C, Mann J (2014) New insights into the epidemiology of childhood atopic dermatitis. Allergy 69(1):3–16

    Article  CAS  PubMed  Google Scholar 

  • Fujimura KE et al (2016) Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 22(10):1187–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furusawa Y et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450

    Article  CAS  PubMed  Google Scholar 

  • Garmhausen D et al (2013) Characterization of different courses of atopic dermatitis in adolescent and adult patients. Allergy 68(4):498–506

    Article  CAS  PubMed  Google Scholar 

  • Gdalevich M et al (2001a) Breast-feeding and the onset of atopic dermatitis in childhood: a systematic review and meta-analysis of prospective studies. J Am Acad Dermatol 45(4):520–527

    Article  CAS  PubMed  Google Scholar 

  • Gdalevich M, Mimouni D, Mimouni M (2001b) Breast-feeding and the risk of bronchial asthma in childhood: a systematic review with meta-analysis of prospective studies. J Pediatr 139(2):261–266

    Article  CAS  PubMed  Google Scholar 

  • Guo Y et al (2017) Long-term use of ceftriaxone sodium induced changes in gut microbiota and immune system. Sci Rep 7:43035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Madani R, Mukhtar H (2010) Streptococcus bovis endocarditis, a silent sign for colonic tumour. Color Dis 12(3):164–171

    Article  CAS  Google Scholar 

  • Gupta RS et al (2011) The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics 128(1):e9–17

    Article  PubMed  Google Scholar 

  • Hadis U et al (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34(2):237–246

    Article  CAS  PubMed  Google Scholar 

  • Halova I, Draberova L, Draber P (2012) Mast cell chemotaxis – chemoattractants and signaling pathways. Front Immunol 3:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamid Q, Boguniewicz M, Leung DY (1994) Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest 94(2):870–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamid Q et al (1996) In vivo expression of IL-12 and IL-13 in atopic dermatitis. J Allergy Clin Immunol 98(1):225–231

    Article  CAS  PubMed  Google Scholar 

  • Herbst T et al (2011) Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med 184(2):198–205

    Article  CAS  PubMed  Google Scholar 

  • Hilty M et al (2010) Disordered microbial communities in asthmatic airways. PLoS One 5(1):e8578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holt PG et al (1990) A contiguous network of dendritic antigen-presenting cells within the respiratory epithelium. Int Arch Allergy Appl Immunol 91(2):155–159

    Article  CAS  PubMed  Google Scholar 

  • Husby S, Jensenius JC, Svehag SE (1985) Passage of undegraded dietary antigen into the blood of healthy adults. Quantification, estimation of size distribution, and relation of uptake to levels of specific antibodies. Scand J Immunol 22(1):83–92

    Article  CAS  PubMed  Google Scholar 

  • Illi S et al (2004) The natural course of atopic dermatitis from birth to age 7 years and the association with asthma. J Allergy Clin Immunol 113(5):925–931

    Article  PubMed  Google Scholar 

  • Imai Y et al (2013) Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci USA 110(34):13921–13926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irvine AD, McLean WH, Leung DY (2011) Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 365(14):1315–1327

    Article  CAS  PubMed  Google Scholar 

  • Iweala OI, Burks AW (2016) Food allergy: our evolving understanding of its pathogenesis, prevention, and treatment. Curr Allergy Asthma Rep 16(5):37

    Article  PubMed  CAS  Google Scholar 

  • Jackson KD, Howie LD, Akinbami LJ (2013) Trends in allergic conditions among children: United States, 1997–2011. NCHS Data Brief (121):1–8

    Google Scholar 

  • Jost T et al (2014) Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 16(9):2891–2904

    Article  CAS  PubMed  Google Scholar 

  • Jost T et al (2015) Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr Rev 73(7):426–437

    Article  PubMed  Google Scholar 

  • Kasraie S, Niebuhr M, Werfel T (2010) Interleukin (IL)-31 induces pro-inflammatory cytokines in human monocytes and macrophages following stimulation with staphylococcal exotoxins. Allergy 65(6):712–721

    Article  CAS  PubMed  Google Scholar 

  • Kennedy EA et al (2017) Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allergy Clin Immunol 139(1):166–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim KS et al (2016) Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351(6275):858–863

    Article  CAS  PubMed  Google Scholar 

  • Kong HH et al (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22(5):850–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer U et al (1999) Age of entry to day nursery and allergy in later childhood. Lancet 353(9151):450–454

    Article  CAS  PubMed  Google Scholar 

  • Lal CV et al (2016) The airway microbiome at birth. Sci Rep 6:31023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal D et al (2017) Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int Forum Allergy Rhinol 7:561–569

    Article  PubMed  Google Scholar 

  • Larche M, Robinson DS, Kay AB (2003) The role of T lymphocytes in the pathogenesis of asthma. J Allergy Clin Immunol 111(3):450–463. quiz 464

    Article  CAS  PubMed  Google Scholar 

  • Lehmann HS et al (2004) Staphylococcal enterotoxin-B-mediated stimulation of interleukin-13 production as a potential aetiologic factor in eczema in infants. Int Arch Allergy Immunol 135(4):306–312

    Article  CAS  PubMed  Google Scholar 

  • Ling Z et al (2014) Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol 80(8):2546–2554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu C et al (2010) Molecular regulation of mast cell development and maturation. Mol Biol Rep 37(4):1993–2001

    Article  CAS  PubMed  Google Scholar 

  • Martin V et al (2012) Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 28(1):36–44

    Article  PubMed  Google Scholar 

  • Mashiko S et al (2015) Human mast cells are major IL-22 producers in patients with psoriasis and atopic dermatitis. J Allergy Clin Immunol 136(2):351–9.e1

    Article  CAS  PubMed  Google Scholar 

  • Meltzer EO et al (2009) Sleep, quality of life, and productivity impact of nasal symptoms in the United States: findings from the Burden of Rhinitis in America survey. Allergy Asthma Proc 30(3):244–254

    Article  PubMed  Google Scholar 

  • Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77(4):1033–1079

    Article  CAS  PubMed  Google Scholar 

  • Midodzi WK et al (2010) Early life factors associated with incidence of physician-diagnosed asthma in preschool children: results from the Canadian Early Childhood Development cohort study. J Asthma 47(1):7–13

    Article  PubMed  Google Scholar 

  • Mimouni Bloch A et al (2002) Does breastfeeding protect against allergic rhinitis during childhood? A meta-analysis of prospective studies. Acta Paediatr 91(3):275–279

    Article  CAS  PubMed  Google Scholar 

  • Morris A et al (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 187(10):1067–1075

    Article  PubMed  PubMed Central  Google Scholar 

  • Muraro A et al (2004) Dietary prevention of allergic diseases in infants and small children. Part III: critical review of published peer-reviewed observational and interventional studies and final recommendations. Pediatr Allergy Immunol 15(4):291–307

    Article  PubMed  Google Scholar 

  • Nakamura Y et al (2013) Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature 503(7476):397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niebuhr M et al (2010) Staphylococcal exotoxins are strong inducers of IL-22: a potential role in atopic dermatitis. J Allergy Clin Immunol 126(6):1176–83.e4

    Article  CAS  PubMed  Google Scholar 

  • Noverr MC et al (2005) Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect Immun 73(1):30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oddy WH et al (1999) Association between breast feeding and asthma in 6 year old children: findings of a prospective birth cohort study. BMJ 319(7213):815–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh J et al (2012) Shifts in human skin and nares microbiota of healthy children and adults. Genome Med 4(10):77

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh J et al (2013) The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res 23(12):2103–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong PY et al (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347(15):1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Pannaraj PS et al (2017) Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr 171(7):647–654

    Article  PubMed  Google Scholar 

  • Peters AS et al (2010) Prediction of the incidence, recurrence, and persistence of atopic dermatitis in adolescence: a prospective cohort study. J Allergy Clin Immunol 126(3):590–5.e1–3

    Article  PubMed  Google Scholar 

  • Piccinni MP et al (1993) Aeroallergen sensitization can occur during fetal life. Int Arch Allergy Immunol 102(3):301–303

    Article  CAS  PubMed  Google Scholar 

  • Plunkett CH, Nagler CR (2017) The influence of the microbiome on allergic sensitization to food. J Immunol 198(2):581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott SL et al (1998) Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J Immunol 160(10):4730–4737

    CAS  PubMed  Google Scholar 

  • Rakoff-Nahoum S et al (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118(2):229–241

    Article  CAS  PubMed  Google Scholar 

  • Ranjan R et al (2016) Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 469(4):967–977

    Article  CAS  PubMed  Google Scholar 

  • Saarinen UM, Kajosaari M (1995) Breastfeeding as prophylaxis against atopic disease: prospective follow-up study until 17 years old. Lancet 346(8982):1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Salimi M et al (2013) A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 210(13):2939–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears MR et al (2002) Long-term relation between breastfeeding and development of atopy and asthma in children and young adults: a longitudinal study. Lancet 360(9337):901–907

    Article  PubMed  Google Scholar 

  • Sehra S et al (2010) IL-4 regulates skin homeostasis and the predisposition toward allergic skin inflammation. J Immunol 184(6):3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi B et al (2016) The skin microbiome is different in pediatric versus adult atopic dermatitis. J Allergy Clin Immunol 138(4):1233–1236

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverberg JI, Simpson EL (2014) Associations of childhood eczema severity: a US population-based study. Dermatitis 25(3):107–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh N et al (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40(1):128–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PM et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573

    Article  CAS  PubMed  Google Scholar 

  • Snijders BE et al (2007) Breastfeeding and infant eczema in the first year of life in the KOALA birth cohort study: a risk period-specific analysis. Pediatrics 119(1):e137–e141

    Article  PubMed  Google Scholar 

  • Sonnenburg JL, Backhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 535(7610):56–64

    Article  CAS  PubMed  Google Scholar 

  • Stefka AT et al (2014) Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 111(36):13145–13150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299(6710):1259–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strachan DP (1997) Allergy and family size: a riddle worth solving. Clin Exp Allergy 27(3):235–236

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Farinas M et al (2011) Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J Allergy Clin Immunol 127(4):954–64.e1–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudo N et al (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159(4):1739–1745

    CAS  PubMed  Google Scholar 

  • Sun CM et al (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204(8):1775–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan J et al (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121:91–119

    Article  CAS  PubMed  Google Scholar 

  • Tan J et al (2016) Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep 15(12):2809–2824

    Article  CAS  PubMed  Google Scholar 

  • Teo SM et al (2015) The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 17(5):704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thangaraju M et al (2009) GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 69(7):2826–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorburn AN et al (2015) Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun 6:7320

    Article  CAS  PubMed  Google Scholar 

  • Trompette A et al (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20(2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Viljoen KS et al (2015) Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS One 10(3):e0119462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z et al (2017) Skin microbiome promotes mast cell maturation by triggering stem cell factor production in keratinocytes. J Allergy Clin Immunol 139(4):1205–16.e6

    Article  CAS  PubMed  Google Scholar 

  • Weidinger S, Novak N (2016) Atopic dermatitis. Lancet 387(10023):1109–1122

    Article  PubMed  Google Scholar 

  • Wolk K et al (2006) IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 36(5):1309–1323

    Article  CAS  PubMed  Google Scholar 

  • Yabuhara A et al (1997) TH2-polarized immunological memory to inhalant allergens in atopics is established during infancy and early childhood. Clin Exp Allergy 27(11):1261–1269

    Article  CAS  PubMed  Google Scholar 

  • Yokota-Nakatsuma A et al (2014) Retinoic acid prevents mesenteric lymph node dendritic cells from inducing IL-13-producing inflammatory Th2 cells. Mucosal Immunol 7(4):786–801

    Article  CAS  PubMed  Google Scholar 

  • Zhang E et al (2011) Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiol Immunol 55(9):625–632

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y et al (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445(7128):648–651

    Article  CAS  PubMed  Google Scholar 

  • Zheng T et al (2009) Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J Invest Dermatol 129(3):742–751

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Perkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aktas, O.N., Turturice, B., Perkins, D.L., Finn, P.W. (2018). Microbiome: Allergic Diseases of Childhood. In: Sun, J., Dudeja, P. (eds) Mechanisms Underlying Host-Microbiome Interactions in Pathophysiology of Human Diseases. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-7534-1_2

Download citation

Publish with us

Policies and ethics