Skip to main content

Tet-Assisted Bisulfite Sequencing (TAB-seq)

  • Protocol
  • First Online:
DNA Methylation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1708))

Abstract

5-Hydroxymethylcytosine (5hmC) is a modified form of cytosine, which has recently been found in mammalian cells and tissues. 5hmC is derived from 5-methylcytosine (5mC) by Ten-eleven translocation (TET) family protein-mediated oxidation and may regulate gene expression. Numerous affinity-based profiling methods have been developed to help understand the exact function of 5hmC in the genome. However, these methods have a relatively low resolution (~100 bp) without quantitative information of the modification percentage on each site. Here we demonstrated the detailed procedure of Tet-Assistant Bisulfite Sequencing (TAB-Seq), which can detect 5hmC at single-base resolution and quantify its abundance at each site. In this protocol, the genomic DNA is first treated with βGT and recombinant mTet1 consecutively to convert 5hmC to 5gmC and 5mC to 5caC, respectively. The treated genomic DNA can be directly applied to bisulfite treatment to detect 5hmC on specific loci or applied to whole-genome bisulfite sequencing as needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Penn NW, Suwalski R, O'Riley C et al (1972) The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem J 126:781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334:194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He YF, Li BZ, Li Z et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cortellino S, Xu J, Sannai M et al (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146:67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo JU, Su Y, Zhong C et al (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Globisch D, Munzel M, Muller M et al (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5:e15367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Munzel M, Globisch D, Bruckl T et al (2010) Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl 49:5375–5377

    Article  PubMed  Google Scholar 

  10. Szwagierczak A, Bultmann S, Schmidt CS et al (2010) Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 38:e181

    Article  PubMed  PubMed Central  Google Scholar 

  11. Song CX, Szulwach KE, Fu Y et al (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29:68–72

    Article  CAS  PubMed  Google Scholar 

  12. Wu H, D’Alessio AC, Ito S et al (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25:679–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ito S, D’Alessio AC, Taranova OV et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dawlaty MM, Ganz K, Powell BE et al (2011) Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9:166–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gu TP, Guo F, Yang H et al (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477:606–610

    Article  CAS  PubMed  Google Scholar 

  16. Iqbal K, Jin SG, Pfeifer GP et al (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 108:3642–3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koh KP, Yabuuchi A, Rao S et al (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8:200–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Szulwach KE, Li X, Li Y et al (2011) Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet 7:e1002154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Szulwach KE, Li X, Li Y et al (2011) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14:1607–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kriukiene E, Liutkeviciute Z, Klimasauskas S (2012) 5-Hydroxymethylcytosine—the elusive epigenetic mark in mammalian DNA. Chem Soc Rev 41:6916–6930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pfaffeneder T, Hackner B, Truss M et al (2011) The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem Int Ed Engl 50:7008–7012

    Article  CAS  PubMed  Google Scholar 

  23. Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286:35334–35338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang L, Lu X, Lu J et al (2012) Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol 8:328–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ficz G, Branco MR, Seisenberger S et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402

    Article  CAS  PubMed  Google Scholar 

  26. Williams K, Christensen J, Pedersen MT et al (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473:343–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu Y, Wu F, Tan L et al (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42:451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pastor WA, Pape UJ, Huang Y et al (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473:394–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pastor WA, Huang Y, Henderson HR et al (2012) The GLIB technique for genome-wide mapping of 5-hydroxymethylcytosine. Nat Protoc 7:1909–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang Y, Pastor WA, Zepeda-Martinez JA et al (2012) The anti-CMS technique for genome-wide mapping of 5-hydroxymethylcytosine. Nat Protoc 7:1897–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robertson AB, Dahl JA, Vagbo CB et al (2011) A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 39:e55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin SG, Kadam S, Pfeifer GP (2010) Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38:e125

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huang Y, Pastor WA, Shen Y et al (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5:e8888

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yu M, Hon GC, Szulwach KE et al (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Josse J, Kornberg A (1962) Glucosylation of deoxyribonucleic acid. III. alpha- and beta-Glucosyl transferases from T4-infected Escherichia coli. J Biol Chem 237:1968–1976

    CAS  PubMed  Google Scholar 

  39. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics 27:1571–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by National Institutes of Health 1R01 HG006827 to C.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, M., Han, D., Hon, G.C., He, C. (2018). Tet-Assisted Bisulfite Sequencing (TAB-seq). In: Tost, J. (eds) DNA Methylation Protocols. Methods in Molecular Biology, vol 1708. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7481-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7481-8_33

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7479-5

  • Online ISBN: 978-1-4939-7481-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics