Skip to main content

A Workflow Guide to RNA-seq Analysis of Chaperone Function and Beyond

  • Protocol
  • First Online:
Book cover Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

RNA sequencing (RNA-seq) is a powerful method of transcript analysis that allows for the sequence identification and quantification of cellular transcripts. RNA-seq has many applications including differential gene expression (DE) analysis, gene fusion detection, allele-specific expression, isoform and splice variant quantification, and identification of novel genes. These applications can be used for downstream systems biology analyses such as gene ontology analysis to provide insights into cellular processes altered between biological conditions. Given the wide range of signaling pathways subject to chaperone activity as well as numerous chaperone functions in RNA metabolism, RNA-seq may provide a valuable tool for the study of chaperone proteins in biology and disease. This chapter outlines an example RNA-seq workflow to determine differentially expressed (DE) genes between two or more sample conditions and provides some considerations for RNA-seq experimental design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weber AP (2015) Discovering new biology through sequencing of RNA. Plant Physiol 169(3):1524–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Boulon S et al (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39(6):912–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iki T et al (2010) In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 39(2):282–291

    Article  CAS  PubMed  Google Scholar 

  5. Sawarkar R, Sievers C, Paro R (2012) Hsp90 globally targets paused RNA polymerase to regulate gene expression in response to environmental stimuli. Cell 149(4):807–818

    Article  CAS  PubMed  Google Scholar 

  6. Ferraldeschi R et al (2016) Second-generation HSP90 inhibitor Onalespib blocks mRNA splicing of androgen receptor variant 7 in prostate cancer cells. Cancer Res 76(9):2731–2742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Duttagupta R et al (2003) A yeast homologue of Hsp70, Ssa1p, regulates turnover of the MFA2 transcript through its AU-rich 3′ untranslated region. Mol Cell Biol 23(8):2623–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Henics T et al (1999) Mammalian Hsp70 and Hsp110 proteins bind to RNA motifs involved in mRNA stability. J Biol Chem 274(24):17318–17324

    Article  CAS  PubMed  Google Scholar 

  9. Kishor A et al (2013) Hsp70 is a novel posttranscriptional regulator of gene expression that binds and stabilizes selected mRNAs containing AU-rich elements. Mol Cell Biol 33(1):71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Laroia G et al (1999) Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science 284(5413):499–502

    Article  CAS  PubMed  Google Scholar 

  11. Marucci A et al (2009) The role of HSP70 on ENPP1 expression and insulin-receptor activation. J Mol Med (Berl) 87(2):139–144

    Article  CAS  Google Scholar 

  12. Wilson GM et al (2001) Thermodynamics and kinetics of Hsp70 association with a + U-rich mRNA-destabilizing sequences. J Biol Chem 276(48):44450–44456

    Article  CAS  PubMed  Google Scholar 

  13. Matsui H, Asou H, Inaba T (2007) Cytokines direct the regulation of Bim mRNA stability by heat-shock cognate protein 70. Mol Cell 25(1):99–112

    Article  CAS  PubMed  Google Scholar 

  14. Zimmer C, Gabain AV, Henics T (2001) Analysis of sequence-specific binding of RNA to Hsp70 and its various homologs indicates the involvement of N- and C-terminal interactions. RNA 7:1628–1637

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Conesa A et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dodt M et al (2012) Flexbar- flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1(3):895–905

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anders S, Pyl PT, Huber W (2015) HTSeq--a python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169

    Article  CAS  PubMed  Google Scholar 

  21. Gentleman R et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  PubMed Central  Google Scholar 

  22. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  23. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  25. Dobin A et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30(3):301–304

    Article  CAS  PubMed  Google Scholar 

  27. Fang Z, Cui X (2011) Design and validation issues in RNA-seq experiments. Brief Bioinform 12(3):280–287

    Article  CAS  PubMed  Google Scholar 

  28. Schurch NJ et al (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22(6):839–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sims D et al (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15(2):121–132

    Article  CAS  PubMed  Google Scholar 

  30. Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22(10):2008–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marioni JC et al (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tarazona S et al (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21(12):2213–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Levin JZ et al (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7(9):709–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Korpelainen E et al (2015) In: Britton NF et al (eds) RNA-seq data analysis: a practical approach. Mathematical and computational biology series. Chapman & Hall/CRC Press, Boca Raton, FL

    Google Scholar 

  35. Schroeder A et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  36. Imbeaud S et al (2005) Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 33(6):e56

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shanker S et al (2015) Evaluation of commercially available RNA amplification kits for RNA sequencing using very low input amounts of total RNA. J Biomol Tech 26(1):4–18

    PubMed  PubMed Central  Google Scholar 

  38. Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38(12):e131

    Article  PubMed  PubMed Central  Google Scholar 

  39. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17(1):10–12

    Article  Google Scholar 

  40. Jiang H et al (2014) Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 15:182

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seyednasrollah F, Laiho A, Elo LL (2015) Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform 16(1):59–70

    Article  PubMed  Google Scholar 

  43. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11(3):R25

    Article  PubMed  PubMed Central  Google Scholar 

  44. Leek JT, Storey JD (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 3(9):e161

    Article  PubMed Central  Google Scholar 

  45. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57(1):289–300

    Google Scholar 

  47. Gene Ontology C (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43(D1):D1049–D1056

    Article  Google Scholar 

  48. Oshlack A, Wakefield MJ (2009) Transcript length bias in RNA-seq data confounds systems biology. Biol Direct 4:14

    Article  PubMed  PubMed Central  Google Scholar 

  49. Supek F et al (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6(7):e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter Journal Complex Systems:1695

    Google Scholar 

  51. Gong J et al (2015) Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis. Oncogene 34(43):5460–5471

    Article  CAS  PubMed  Google Scholar 

  52. Robinson JT et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192

    Article  CAS  PubMed  Google Scholar 

  54. Griffith M et al (2015) Informatics for RNA sequencing: a web resource for analysis on the cloud. PLoS Comput Biol 11(8):e1004393

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Thiago De Borges (BIDMC, Harvard Medical School) for critical reading of this chapter.

Declaration of Interest: Kristina M Holton is currently a Campus Champion for the XSEDE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lang, B.J., Holton, K.M., Gong, J., Calderwood, S.K. (2018). A Workflow Guide to RNA-seq Analysis of Chaperone Function and Beyond. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics