Skip to main content

Bacterial Hsp90 ATPase Assays

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

Bacterial Hsp90 is an ATP-dependent molecular chaperone involved in protein remodeling and activation. The E. coli Hsp90, Hsp90Ec, collaborates in protein remodeling with another ATP-dependent chaperone, DnaK, the E. coli Hsp70. Both Hsp90Ec and DnaK hydrolyze ATP and client (substrate) proteins stimulate the hydrolysis. Additionally, ATP hydrolysis by the combination of Hsp90Ec and DnaK is synergistically stimulated in the presence of client (substrate). Here, we describe two steady-state ATPase assays used to monitor ATP hydrolysis by Hsp90Ec and DnaK as well as the synergistic stimulation of ATP hydrolysis by the combination of Hsp90Ec and DnaK in the presence of a client (substrate). The first assay is a spectrophotometric assay based on enzyme-coupled reactions that utilize the ADP formed during ATP hydrolysis to oxidize NADH. The second assay is a more sensitive method that directly quantifies the radioactive inorganic phosphate released following the hydrolysis of [γ-33P] ATP or [γ-32P] ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta, Mol Cell Res 1823:607–613

    Article  CAS  PubMed  Google Scholar 

  2. Röhl A, Rohrberg J, Buchner J (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 38:253–262

    Article  PubMed  Google Scholar 

  3. Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta, Mol Cell Res 1823:624–635

    Article  CAS  PubMed  Google Scholar 

  4. Genest O, Hoskins JR, Camberg JL, Doyle SM, Wickner S (2011) Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Proc Natl Acad Sci U S A 108:8206–8211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakamoto H, Fujita K, Ohtaki A, Watanabe S, Narumi S, Maruyama T, Suenaga E, Misono TS, Kumar PKR, Goloubinoff P, Yoshikawa H (2014) Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins. J Biol Chem 289:6110–6119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prodromou C (2012) The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta, Mol Cell Res 1823:614–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prodromou C, Morgan RML (2016) "Tuning" the ATPase activity of Hsp90. Adv Biochem Health Dis 14:469–490

    Google Scholar 

  8. Genest O, Reidy M, Street TO, Hoskins JR, Camberg JL, Agard DA, Masison DC, Wickner S (2013) Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast. Mol Cell 49:464–473

    Article  CAS  PubMed  Google Scholar 

  9. Karagöz GE, Rüdiger SGD (2015) Hsp90 interaction with clients. Trends Biochem Sci 40:117–125

    Article  PubMed  Google Scholar 

  10. Southworth DR, Agard DA (2008) Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol Cell 32:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Graf C, Stankiewicz M, Kramer G, Mayer MP (2009) Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine. EMBO J 28:602–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  PubMed  Google Scholar 

  13. Shiau AK, Harris SF, Southworth DR, Agard DA (2006) Structural analysis of E. Coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329–340

    Article  CAS  PubMed  Google Scholar 

  14. Ali MMU, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LH (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013–1017

    Article  CAS  PubMed  Google Scholar 

  15. Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353:aac4354

    Article  PubMed  Google Scholar 

  16. Clerico EM, Tilitsky JM, Meng W, Gierasch LM (2015) How Hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol 427:1575–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mayer MP (2013) Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 38:507–514

    Article  CAS  PubMed  Google Scholar 

  18. Alderson TR, Kim JH, Markley JL (2016) Dynamical structures of Hsp70 and Hsp70-Hsp40 complexes. Structure 24:1014–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zuiderweg ERP, Bertelsen EB, Rousaki A, Mayer MP, Gestwicki JE, Ahmad A (2013) Allostery in the Hsp70 chaperone proteins. Top Curr Chem 328:99–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Genest O, Hoskins JR, Kravats AN, Doyle SM, Wickner S (2015) Hsp70 and Hsp90 of E. coli directly interact for collaboration in protein remodeling. J Mol Biol 427:3877–3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ali JA, Jackson AP, Howells AJ, Maxwell A (1993) The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs. Biochemistry 32:2717–2724

    Article  CAS  PubMed  Google Scholar 

  22. Sehgal P, Olesen C, Moller JV (2016) ATPase activity measurements by an enzyme-coupled spectrophotometric assay. Methods Mol Biol 1377:105–109

    Article  CAS  PubMed  Google Scholar 

  23. Shacter E (1984) Organic extraction of Pi with isobutanol/toluene. Anal Biochem 138:416–420

    Article  CAS  PubMed  Google Scholar 

  24. Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Intramural Research Program of the NIH, NCI, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sue Wickner or Shannon M. Doyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hoskins, J.R., Wickner, S., Doyle, S.M. (2018). Bacterial Hsp90 ATPase Assays. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics