Skip to main content

Characterization of Ligand Binding to GPCRs Through Computational Methods

  • Protocol
  • First Online:
Computational Methods for GPCR Drug Discovery

Abstract

The recent increase in available G protein-coupled receptor structures now contributes decisively to the structure-based ligand design. In this context, computational approaches in combination with medicinal chemistry and pharmacology are extremely helpful. Here, we provide an update on our structure-based computational protocols, used to answer key questions related to GPCR-ligand binding. All combined, these techniques can shed light on ligand binding modes, determine the molecular basis of conformational selection, for agonists and antagonists, as well as of subtype selectivity. To illustrate each of these questions, we will consider examples from existing projects on three families of class A (rhodopsin-like) GPCRs: one small-molecule (nucleotide-like) family, i.e., the adenosine receptors, and two peptide-binding receptors: neuropeptide-Y and angiotensin II receptors. The successful application of the same computational protocols to investigate this diverse group of receptor families gives an idea of the general applicability of our methodology in the characterization of GPCR-ligand binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    During the processing of this manuscript one structure for the AT2 receptor (5UHN) and 2 structures for the A1 adenosine receptor (PDB codes 5N2S and 5UEN) were released.

References

  1. Santos R, Ursu O, Gaulton A et al (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34. https://doi.org/10.1038/nrd.2016.230

    Article  CAS  PubMed  Google Scholar 

  2. Stevens RC, Cherezov V, Katritch V et al (2013) The GPCR network: a large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov 12:25–34. https://doi.org/10.1038/nrd3859

    Article  CAS  PubMed  Google Scholar 

  3. Jazayeri A, Andrews SP, Marshall FH (2016) Structurally enabled discovery of adenosine A2A receptor antagonists. Chem Rev 117:21–37. https://doi.org/10.1021/acs.chemrev.6b00119

    Article  PubMed  Google Scholar 

  4. Kooistra AJ, Roumen L, Leurs R et al (2013) From Heptahelical bundle to hits from the haystack: structure-based virtual screening for GPCR ligands. Methods Enzymol 522:279–336. https://doi.org/10.1016/B978-0-12-407865-9.00015-7

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez D, Gutierrez-de-Teran H (2013) Computational approaches for ligand discovery and design in class-a G protein-coupled receptors. Curr Pharm Des 19:2216–2236

    Article  CAS  PubMed  Google Scholar 

  6. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272. https://doi.org/10.1124/mol.63.6.1256

    Article  CAS  PubMed  Google Scholar 

  7. Michino M, Abola E, GPCR Dock 2008 Participants et al (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR dock 2008. Nat Rev Drug Discov 8:455–463. https://doi.org/10.1038/nrd2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kufareva I, Rueda M, Katritch V et al (2011) Status of GPCR modeling and docking as reflected by community-wide GPCR dock 2010 assessment. Structure 19:1108–1126. https://doi.org/10.1016/j.str.2011.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kufareva I, Katritch V, Stevens RC et al (2014) Advances in GPCR modeling evaluated by the GPCR dock 2013 assessment: meeting new challenges. Structure 22:1120–1139. https://doi.org/10.1016/j.str.2014.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80. https://doi.org/10.1016/j.pharmthera.2004.05.002

    Article  CAS  PubMed  Google Scholar 

  11. Zhukov A, Andrews SP, Errey JC et al (2011) Biophysical mapping of the adenosine A2A receptor. J Med Chem 54:4312–4323. https://doi.org/10.1021/jm2003798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gutierrez-de-Teran H, Keränen H, Azuaje J et al (2015) Computer-aided design of GPCR ligands. Methods Mol Biol 1272:271–291. https://doi.org/10.1007/978-1-4939-2336-6_19

    Article  CAS  PubMed  Google Scholar 

  13. Chen J-F, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets – what are the challenges? Nat Rev Drug Discov 12:265–286. https://doi.org/10.1038/nrd3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Michel MC, Beck-Sickinger A, Cox H et al (1998) XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 50:143–150

    CAS  PubMed  Google Scholar 

  15. Zhang L, Bijker MS, Herzog H (2011) The neuropeptide Y system: pathophysiological and therapeutic implications in obesity and cancer. Pharmacol Ther 131:91–113. https://doi.org/10.1016/j.pharmthera.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  16. Boukharta L, Gutierrez-de-Teran H, Aqvist J (2014) Computational prediction of alanine scanning and ligand binding energetics in G-protein coupled receptors. PLoS Comput Biol 10:e1003585. https://doi.org/10.1371/journal.pcbi.1003585

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xu B, Fällmar H, Boukharta L et al (2013) Mutagenesis and computational Modeling of human G protein-coupled receptor Y2 for neuropeptide Y and peptide YY. Biochemistry 52:7987–7998

    Google Scholar 

  18. Stegbauer J, Coffman TM (2011) New insights into angiotensin receptor actions: from blood pressure to aging. Curr Opin Nephrol Hypertens 20:84–88. https://doi.org/10.1097/MNH.0b013e3283414d40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang H, Unal H, Gati C et al (2015) Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161:833–844. https://doi.org/10.1016/j.cell.2015.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang H, Unal H, Desnoyer R et al (2015) Structural basis for ligand recognition and functional selectivity at angiotensin receptor. J Biol Chem 290:29127–29139. https://doi.org/10.1074/jbc.M115.689000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang H, Han GW, Batyuk A, Ishchenko A, White KL, Patel N, Sadybekov A, Zamlynny B, Rudd MT, Hollenstein K, Tolstikova A, White TA, Hunter MS, Weierstall U, Liu W, Babaoglu K, Moore EL, Katz RD, Shipman JM, Garcia-Calvo M, Sharma S, Sheth P, Soisson SM, Stevens RC, Katritch V, Cherezov V (2017) Structural basis for selectivity and diversity in angiotensin II receptors. Nature 544:327–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sallander J, Wallinder C, Hallberg A et al (2016) Structural determinants of subtype selectivity and functional activity of angiotensin II receptors. Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2015.10.084

  23. Rodriguez D, Bello X, Gutierrez-de-Teran H (2012) Molecular modelling of G protein-coupled receptors through the web. Mol Inform 31:334–341. https://doi.org/10.1002/minf.201100162

    Article  CAS  PubMed  Google Scholar 

  24. Esguerra M, Siretskiy A, Bello X et al (2016) GPCR-ModSim: a comprehensive web based solution for modeling G-protein coupled receptors. Nucleic Acids Res 44:W455–W462. https://doi.org/10.1093/nar/gkw403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Worth CL, Kreuchwig A, Kleinau G, Krause G (2011) GPCR-SSFE: a comprehensive database of G-protein-coupled receptor template predictions and homology models. BMC Bioinform 12:185. https://doi.org/10.1186/1471-2105-12-185

    Article  CAS  Google Scholar 

  26. Mobarec JC, Sanchez R, Filizola M (2009) Modern homology modeling of G-protein coupled receptors: which structural template to use? J Med Chem 52:5207–5216. https://doi.org/10.1021/jm9005252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Webb B, Sali A (2014) Comparative protein structure modeling using modeller. Curr Protoc Bioinformatics 47:5–6. https://doi.org/10.1002/0471250953.bi0506s47

    PubMed  Google Scholar 

  28. Gutierrez-de-Teran H, Bello X, Rodriguez D (2013) Characterization of the dynamic events of GPCRs by automated computational simulations. Biochem Soc Trans 41:205–212. https://doi.org/10.1042/BST20120287

    Article  CAS  PubMed  Google Scholar 

  29. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623. https://doi.org/10.1002/prot.10465

    Article  CAS  PubMed  Google Scholar 

  30. Schrödinger L (2012) Schrödinger Suite 2012. doi: https://doi.org/10.3389/fphar.2015.00011/full

  31. Nervall M, Hanspers P, Carlsson J et al (2008) Predicting binding modes from free energy calculations. J Med Chem 51:2657–2667. https://doi.org/10.1021/jm701218j

    Article  CAS  PubMed  Google Scholar 

  32. Brandsdal BO, Osterberg F, Almlöf M et al (2003) Free energy calculations and ligand binding. Adv Protein Chem 66:123–158

    Article  CAS  PubMed  Google Scholar 

  33. Keränen H, Gutierrez-de-Teran H, Aqvist J (2014) Structural and energetic effects of A2A adenosine receptor mutations on agonist and antagonist binding. PLoS One 9:e108492. https://doi.org/10.1371/journal.pone.0108492

    Article  PubMed  PubMed Central  Google Scholar 

  34. Keränen H, Aqvist J, Gutierrez-de-Teran H (2015) Free energy calculations of a(2A) adenosine receptor mutation effects on agonist binding. Chem Commun (Camb) 51:3522–3525. https://doi.org/10.1039/c4cc09517k

    Article  Google Scholar 

  35. Rodriguez D, Pineiro A, Gutierrez-de-Teran H (2011) Molecular dynamics simulations reveal insights into key structural elements of adenosine receptors. Biochemistry 50:4194–4208. https://doi.org/10.1021/bi200100t

    Article  CAS  PubMed  Google Scholar 

  36. Bharate SB, Singh B, Kachler S et al (2016) Discovery of 7-(Prolinol-N-yl)-2-phenylamino-thiazolo[5,4-d]pyrimidines as novel non-nucleoside partial agonists for the A2A adenosine receptor: prediction from molecular Modeling. J Med Chem 59:5922–5928. https://doi.org/10.1021/acs.jmedchem.6b00552

    Article  CAS  PubMed  Google Scholar 

  37. Venkatakrishnan AJ, Deupi X, Lebon G et al (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194. https://doi.org/10.1038/nature11896

    Article  CAS  PubMed  Google Scholar 

  38. Surgand J-S, Rodrigo J, Kellenberger E, Rognan D (2006) A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins 62:509–538. https://doi.org/10.1002/prot.20768

    Article  CAS  PubMed  Google Scholar 

  39. Gutierrez-de-Teran H, Aqvist J (2012) Linear interaction energy: method and applications in drug design. In: Barron R (ed) Computational drug discovery and design. Springer, New York, pp 305–323

    Chapter  Google Scholar 

  40. Latek D, Pasznik P, Carlomagno T, Filipek S (2013) Towards improved quality of GPCR models by usage of multiple templates and profile-profile comparison. PLoS One 8:e56742. https://doi.org/10.1371/journal.pone.0056742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sandal M, Duy TP, Cona M et al (2013) GOMoDo: a GPCRs online modeling and docking webserver. PLoS One 8:e74092. https://doi.org/10.1371/journal.pone.0074092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Gutiérrez-de-Terán .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vasile, S. et al. (2018). Characterization of Ligand Binding to GPCRs Through Computational Methods. In: Heifetz, A. (eds) Computational Methods for GPCR Drug Discovery. Methods in Molecular Biology, vol 1705. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7465-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7465-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7464-1

  • Online ISBN: 978-1-4939-7465-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics