Skip to main content

Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of Structure-Based Drug Discovery

  • Protocol
  • First Online:
Computational Methods for GPCR Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1705))

Abstract

GPCR modeling approaches are widely used in the hit-to-lead (H2L) and lead optimization (LO) stages of drug discovery. The aims of these modeling approaches are to predict the 3D structures of the receptor-ligand complexes, to explore the key interactions between the receptor and the ligand and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this book chapter, we present a brief survey of key computational approaches integrated with hierarchical GPCR modeling protocol (HGMP) used in hit-to-lead (H2L) and in lead optimization (LO) stages of structure-based drug discovery (SBDD). We outline the differences in modeling strategies used in H2L and LO of SBDD and illustrate how these tools have been applied in three drug discovery projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heifetz A, Schertler GF, Seifert R, Tate CG, Sexton PM, Gurevich VV, Fourmy D, Cherezov V, Marshall FH, Storer RI, Moraes I, Tikhonova IG, Tautermann CS, Hunt P, Ceska T, Hodgson S, Bodkin MJ, Singh S, Law RJ, Biggin PC (2015) GPCR structure, function, drug discovery and crystallography: report from academia-industry international conference (UK Royal Society) Chicheley hall, 1-2 September 2014. Naunyn Schmiedeberg's Arch Pharmacol 388:883–903

    Article  CAS  Google Scholar 

  2. Shonberg J, Kling RC, Gmeiner P, Lober S (2015) GPCR crystal structures: medicinal chemistry in the pocket. Bioorg Med Chem 23:3880–3906

    Article  CAS  PubMed  Google Scholar 

  3. Wise A, Gearing K, Rees S (2002) Target validation of G-protein coupled receptors. Drug Discov Today 7:235–246

    Article  CAS  PubMed  Google Scholar 

  4. Rask-Andersen M, Masuram S, Schioth HB (2014) The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu Rev Pharmacol Toxicol 54:9–26

    Article  CAS  PubMed  Google Scholar 

  5. Dohlman HG (2015) Thematic minireview series: new directions in G protein-coupled receptor pharmacology. J Biol Chem 290:19469–19470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jazayeri A, Andrews SP, Marshall FH (2017) Structurally enabled discovery of adenosine A2A receptor antagonists. Chem Rev 117:21–37

    Article  CAS  PubMed  Google Scholar 

  7. Jazayeri A, Dias JM, Marshall FH (2015) From G protein-coupled receptor structure resolution to rational drug design. J Biol Chem 290:19489–19495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cooke RM, Brown AJ, Marshall FH, Mason JS (2015) Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today 20:1355–1364

    Article  CAS  PubMed  Google Scholar 

  9. Congreve M, Dias JM, Marshall FH (2014) Structure-based drug design for G protein-coupled receptors. Prog Med Chem 53:1–63

    Article  CAS  PubMed  Google Scholar 

  10. Topiol S, Sabio M (2009) X-ray structure breakthroughs in the GPCR transmembrane region. Biochem Pharmacol 78:11–20

    Article  CAS  PubMed  Google Scholar 

  11. Topiol S (2013) X-ray structural information of GPCRs in drug design: what are the limitations and where do we go? Expert Opin Drug Discov 8:607–620

    Article  CAS  PubMed  Google Scholar 

  12. Topiol S, Sabio M (2015) The role of experimental and computational structural approaches in 7TM drug discovery. Expert Opin Drug Discov 10:1071–1084

    Article  PubMed  Google Scholar 

  13. Tautermann CS, Gloriam DE (2016) Editorial overview: new technologies: GPCR drug design and function-exploiting the current (of) structures. Curr Opin Pharmacol 30:8–10

    Article  Google Scholar 

  14. Biggin PC, Aldeghi M, Bodkin MJ, Heifetz A (2016) Beyond membrane protein structure: drug discovery, dynamics and difficulties. Adv Exp Med Biol 922:161–181

    Article  CAS  PubMed  Google Scholar 

  15. Tautermann CS, Seeliger D, Kriegl JM (2015) What can we learn from molecular dynamics simulations for GPCR drug design? Comput Struct Biotechnol J 13:111–121

    Article  CAS  PubMed  Google Scholar 

  16. Latorraca NR, Venkatakrishnan AJ, Dror RO (2017) GPCR dynamics: structures in motion. Chem Rev 117:139–155

    Article  CAS  PubMed  Google Scholar 

  17. Guo D, Pan AC, Dror RO, Mocking T, Liu R, Heitman LH, Shaw DE, IJ AP (2016) Molecular basis of ligand dissociation from the adenosine A2A receptor. Mol Pharmacol 89:485–491

    Article  CAS  PubMed  Google Scholar 

  18. Pan AC, Borhani DW, Dror RO, Shaw DE (2013) Molecular determinants of drug-receptor binding kinetics. Drug Discov Today 18:667–673

    Article  CAS  PubMed  Google Scholar 

  19. Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu H, Borhani DW, Shaw DE (2011) Activation mechanism of the beta2-adrenergic receptor. Proc Natl Acad Sci U S A 108:18684–18689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mason JS, Bortolato A, Weiss DR, Deflorian F, Tehan B, Marshall FH (2013) High end GPCR design: crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks. In Silico Pharmacol 1:23

    Article  PubMed Central  Google Scholar 

  21. Heifetz A, James T, Morao I, Bodkin MJ, Biggin PC (2016) Guiding lead optimization with GPCR structure modeling and molecular dynamics. Curr Opin Pharmacol 30:14–21

    Article  CAS  PubMed  Google Scholar 

  22. Deprez-Poulain R, Deprez B (2004) Facts, figures and trends in lead generation. Curr Top Med Chem 4:569–580

    Article  CAS  PubMed  Google Scholar 

  23. Heifetz A, Aldeghi M, Chudyk E, Fedorov DG, Bodkin M, Biggin PC (2016) Using the fragment molecular orbital method to investigate agonist-orexin 2 receptor interactions. Biochem Soc Trans 44(2):574–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heifetz A, Chudyk EI, Gleave L, Aldeghi M, Cherezov V, Fedorov DG, Biggin PC, Bodkin MJ (2016) The fragment molecular orbital method reveals new insight into the chemical nature of GPCR-ligand interactions. J Chem Inf Model 56:159–172

    Article  CAS  PubMed  Google Scholar 

  25. Heifetz A, Storer RI, McMurray G, James T, Morao I, Aldeghi M, Bodkin MJ, Biggin PC (2016) Application of an integrated GPCR SAR-modeling platform to explain the activation selectivity of human 5-HT over 5-HT. ACS Chem Biol 11(5):1372–1382

    Article  CAS  PubMed  Google Scholar 

  26. Storer RI, Brennan PE, Brown AD, Bungay PJ, Conlon KM, Corbett MS, DePianta RP, Fish PV, Heifetz A, Ho DK, Jessiman AS, McMurray G, de Oliveira CA, Roberts LR, Root JA, Shanmugasundaram V, Shapiro MJ, Skerten M, Westbrook D, Wheeler S, Whitlock GA, Wright J (2014) Multiparameter optimization in CNS drug discovery: design of pyrimido[4,5-d]azepines as potent 5-hydroxytryptamine 2C (5-HT(2)C) receptor agonists with exquisite functional selectivity over 5-HT(2)A and 5-HT(2)B receptors. J Med Chem 57:5258–5269

    Article  CAS  PubMed  Google Scholar 

  27. Tautermann CS (2014) GPCR structures in drug design, emerging opportunities with new structures. Bioorg Med Chem Lett 24:4073–4079

    Article  CAS  PubMed  Google Scholar 

  28. Bartuzi D, Kaczor AA, Targowska-Duda KM, Matosiuk D (2017) Recent advances and applications of molecular docking to G protein-coupled receptors. Molecules 22(2):E340

    Article  PubMed  Google Scholar 

  29. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  30. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  31. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    Article  CAS  PubMed  Google Scholar 

  33. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    Article  CAS  PubMed  Google Scholar 

  34. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  35. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE 3rd (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  PubMed  Google Scholar 

  36. Liu S, Wu Y, Lin T, Abel R, Redmann JP, Summa CM, Jaber VR, Lim NM, Mobley DL (2013) Lead optimization mapper: automating free energy calculations for lead optimization. J Comput Aided Mol Des 27(9). https://doi.org/10.1007/s10822-10013-19678-y

  37. Sotriffer CA, Flader W, Winger RH, Rode BM, Liedl KR, Varga JM (2000) Automated docking of ligands to antibodies: methods and applications. Methods 20:280–291

    Article  CAS  PubMed  Google Scholar 

  38. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blundell CD, Packer MJ, Almond A (2013) Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation. Bioorg Med Chem 21:4976–4987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hawkins PC, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82

    Article  CAS  PubMed  Google Scholar 

  41. Marino KA, Shang Y, Filizola M (2017) Insights into the function of opioid receptors from molecular dynamics simulations of available crystal structures. Br J Pharmacol. https://doi.org/10.1111/bph.13774

  42. Schneider S, Provasi D, Filizola M (2015) The dynamic process of drug-GPCR binding at either orthosteric or allosteric sites evaluated by metadynamics. Methods Mol Biol 1335:277–294

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kaczor AA, Rutkowska E, Bartuzi D, Targowska-Duda KM, Matosiuk D, Selent J (2016) Computational methods for studying G protein-coupled receptors (GPCRs). Methods Cell Biol 132:359–399

    Article  PubMed  Google Scholar 

  44. Bartuzi D, Kaczor AA, Matosiuk D (2015) Activation and allosteric modulation of human mu opioid receptor in molecular dynamics. J Chem Inf Model 55:2421–2434

    Article  CAS  PubMed  Google Scholar 

  45. Labute P (2010) LowModeMD--implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J Chem Inf Model 50:792–800

    Article  CAS  PubMed  Google Scholar 

  46. De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061

    Article  PubMed  Google Scholar 

  47. Mollica L, Theret I, Antoine M, Perron-Sierra F, Charton Y, Fourquez J-M, Wierzbicki M, Boutin JA, Ferry G, Decherchi S, Bottegoni G, Ducrot P, Cavalli A (2016) Molecular dynamics simulations and kinetic measurements to estimate and predict protein–ligand residence times. J Med Chem 59:7167–7176

    Article  CAS  PubMed  Google Scholar 

  48. Copeland RA (2016) The drug-target residence time model: a 10-year retrospective. Nat Rev Drug Discov 15:87–95

    Article  CAS  PubMed  Google Scholar 

  49. Heifetz A, Trani G, Aldeghi M, MacKinnon CH, McEwan PA, Brookfield FA, Chudyk E, Bodkin M, Pei Z, Burch JD, Ortwine DF (2016) Fragment molecular orbital method applied to lead optimization of novel interleukin-2 inducible T-Cell Kinase (ITK) inhibitors. J Med Chem 59(9):4352–4363

    Article  CAS  PubMed  Google Scholar 

  50. Morao I, Fedorov DG, Robinson R, Southey M, Townsend-Nicholson A, Bodkin MJ, Heifetz A (2017) Rapid and accurate assessment of GPCR-ligand interactions using the fragment molecular orbital-based density-functional tight-binding method. J Comput Chem 38(23):1987–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J Am Chem Soc 130:2817–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ross GA, Morris GM, Biggin PC (2012) Rapid and accurate prediction and scoring of water molecules in protein binding sites. PLoS One 7:e32036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Truchon JF, Pettitt BM, Labute P (2014) A cavity corrected 3D-RISM functional for accurate solvation free energies. J Chem Theory Comput 10:934–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gerogiokas G, Southey MW, Mazanetz MP, Heifetz A, Bodkin M, Law RJ, Henchman RH, Michel J (2016) Assessment of hydration thermodynamics at protein interfaces with grid cell theory. J Phys Chem B 120:10442–10452

    Article  CAS  PubMed  Google Scholar 

  55. Gerogiokas G, Southey MW, Mazanetz MP, Heifetz A, Bodkin M, Law RJ, Michel J (2015) Evaluation of water displacement energetics in protein binding sites with grid cell theory. Phys Chem Chem Phys 17:8416–8426

    Article  CAS  PubMed  Google Scholar 

  56. Vajda S, Guarnieri F (2006) Characterization of protein-ligand interaction sites using experimental and computational methods. Curr Opin Drug Discov Devel 9:354–362

    CAS  PubMed  Google Scholar 

  57. Goldmann D, Zdrazil B, Digles D, Ecker GF (2016) Empowering pharmacoinformatics by linked life science data. J Comput Aided Mol Des 31(3):319–328

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mazanetz MP, Marmon RJ, Reisser CB, Morao I (2012) Drug discovery applications for KNIME: an open source data mining platform. Curr Top Med Chem 12:1965–1979

    Article  CAS  PubMed  Google Scholar 

  59. Heifetz A, Barker O, Verquin G, Wimmer N, Meutermans W, Pal S, Law RJ, Whittaker M (2013) Fighting obesity with a sugar-based library: discovery of novel MCH-1R antagonists by a new computational-VAST approach for exploration of GPCR binding sites. J Chem Inf Model 53:1084–1099

    Article  CAS  PubMed  Google Scholar 

  60. Tye H, Mueller SG, Prestle J, Scheuerer S, Schindler M, Nosse B, Prevost N, Brown CJ, Heifetz A, Moeller C, Pedret-Dunn A, Whittaker M (2011) Novel 6,7,8,9-tetrahydro-5H-1,4,7,10a-tetraaza-cyclohepta[f]indene analogues as potent and selective 5-HT(2C) agonists for the treatment of metabolic disorders. Bioorg Med Chem Lett 21:34–37

    Article  CAS  PubMed  Google Scholar 

  61. Davenport AJ, Moller C, Heifetz A, Mazanetz MP, Law RJ, Ebneth A, Gemkow MJ (2010) Using electrophysiology and in silico three-dimensional modeling to reduce human Ether-a-go-go related gene K(+) channel inhibition in a histamine H3 receptor antagonist program. Assay Drug Dev Technol 8:781–789

    Article  CAS  PubMed  Google Scholar 

  62. Heifetz A, Morris GB, Biggin PC, Barker O, Fryatt T, Bentley J, Hallett D, Manikowski D, Pal S, Reifegerste R, Slack M, Law R (2012) Study of human Orexin-1 and -2 G-protein-coupled receptors with novel and published antagonists by modeling, molecular dynamics simulations, and site-directed mutagenesis. Biochemistry 51:3178–3197

    Article  CAS  PubMed  Google Scholar 

  63. Barnoud J, Monticelli L (2015) Coarse-grained force fields for molecular simulations. Methods Mol Biol 1215:125–149

    Article  CAS  PubMed  Google Scholar 

  64. Gutierrez-de-Teran H, Keranen H, Azuaje J, Rodriguez D, Aqvist J, Sotelo E (2015) Computer-aided design of GPCR ligands. Methods Mol Biol 1272:271–291

    Article  CAS  PubMed  Google Scholar 

  65. Tummino PJ, Copeland RA (2008) Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 47:5481–5492

    Article  CAS  PubMed  Google Scholar 

  66. Guo D, Hillger JM, IJzerman AP, Heitman LH (2014) Drug-target residence time—a case for G protein-coupled receptors. Med Res Rev 34:856–892

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

A.H. and A.T.-N. would like to acknowledge the support of EU H2020 CompBioMed project (http://www.compbiomed.eu/) and the BBSRC Flexible Interchanger Programme project (BB/P004245/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Heifetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Heifetz, A., Southey, M., Morao, I., Townsend-Nicholson, A., Bodkin, M.J. (2018). Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of Structure-Based Drug Discovery. In: Heifetz, A. (eds) Computational Methods for GPCR Drug Discovery. Methods in Molecular Biology, vol 1705. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7465-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7465-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7464-1

  • Online ISBN: 978-1-4939-7465-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics