Skip to main content

Immunoprecipitation of RNA:DNA Hybrids from Budding Yeast

  • Protocol
  • First Online:
DNA Topoisomerases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1703))

Abstract

During transcription, the nascent transcript behind an elongating RNA polymerase (RNAP) can invade the DNA duplex and hybridize with the complementary DNA template strand, generating a three-stranded “R-loop” structure, composed of an RNA:DNA duplex and an unpaired non-template DNA strand. R-loops can be strongly associated with actively transcribed loci by all RNAPs including the mitochondrial RNA polymerase (mtRNAP). In this chapter, we describe two protocols for the detection of RNA:DNA hybrids in living budding yeast cells, one that uses conventional chromatin immunoprecipitation (ChIP-qPCR) and one that uses DNA:RNA immunoprecipitation (DRIP-qPCR). Both protocols make use of the S9.6 antibody, which is believed to recognize the intermediate A/B helical RNA:DNA duplex conformation, with no sequence specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lesage P, Todeschini AL (2005) Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 110(1–4):70–90

    Article  CAS  PubMed  Google Scholar 

  2. Lujan SA, Williams JS, Kunkel TA (2016) DNA polymerases divide the labor of genome replication. Trends Cell Biol 26(9):640–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nudler E (2009) RNA polymerase active center: the molecular engine of transcription. Annu Rev Biochem 78:335–61. doi: https://doi.org/10.1146/annurev.biochem.76.052705.164655. Review. PMID:19489723

  4. Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46(2):115–124

    Article  CAS  PubMed  Google Scholar 

  5. Drolet M (2006) Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol Microbiol 59(3):723–730

    Article  CAS  PubMed  Google Scholar 

  6. Groh M, Gromak N (2014) Out of balance: R-loops in human disease. PLoS Genet 10(9):e1004630

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hamperl S, Cimprich KA (2014) The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair (Amst) 19:84–94

    Article  CAS  Google Scholar 

  8. Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev Genet 16(10):583–597

    Article  CAS  PubMed  Google Scholar 

  9. Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28(13):1384–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu K et al (2003) R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4(5):442–451

    Article  CAS  PubMed  Google Scholar 

  11. Pefanis E, Basu U (2015) RNA exosome regulates AID DNA Mutator activity in the B cell genome. Adv Immunol 127:257–308

    Article  PubMed  PubMed Central  Google Scholar 

  12. Drolet M et al (1995) Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc Natl Acad Sci U S A 92(8):3526–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pommier Y et al (2016) Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol 17(11):703–721

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez X et al (2014) Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils. EMBO J 33(13):1492–1501

    CAS  PubMed  PubMed Central  Google Scholar 

  15. El Hage A et al (2010) Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev 24(14):1546–1558

    Article  PubMed  PubMed Central  Google Scholar 

  16. French SL et al (2011) Distinguishing the roles of topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes. Mol Cell Biol 31(3):482–494

    Article  CAS  PubMed  Google Scholar 

  17. Cerritelli SM, Crouch RJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276(6):1494–1505

    Article  CAS  PubMed  Google Scholar 

  18. Stuckey R et al (2015) Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system. Proc Natl Acad Sci U S A 112(18):5779–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amon JD, Koshland D (2016) RNase H enables efficient repair of R-loop induced DNA damage. elife 5. https://doi.org/10.7554/eLife.20533.

  20. Christman MF, Dietrich FS, Fink GR (1988) Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell 55(3):413–425

    Article  CAS  PubMed  Google Scholar 

  21. Salvi JS et al (2014) Roles for Pbp1 and caloric restriction in genome and lifespan maintenance via suppression of RNA-DNA hybrids. Dev Cell 30(2):177–191

    Article  CAS  PubMed  Google Scholar 

  22. Pannunzio NR, Lieber MR (2016) Dissecting the roles of divergent and convergent transcription in chromosome instability. Cell Rep 14(5):1025–1031

    Article  CAS  PubMed  Google Scholar 

  23. Yadav P, Owiti N, Kim N (2016) The role of topoisomerase I in suppressing genome instability associated with a highly transcribed guanine-rich sequence is not restricted to preventing RNA:DNA hybrid accumulation. Nucleic Acids Res 44(2):718–729

    Article  CAS  PubMed  Google Scholar 

  24. Jenjaroenpun P et al (2017) R-loopDB: a database for R-loop forming sequences (RLFS) and R-loops. Nucleic Acids Res 45(D1):D119–D127

    Article  PubMed  Google Scholar 

  25. Halasz L et al (2017) RNA-DNA hybrid (R-loop) immunoprecipitation mapping: an analytical workflow to evaluate inherent biases. Genome Res 27(6):1063–1073

    Article  CAS  PubMed  Google Scholar 

  26. Boguslawski SJ et al (1986) Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids. J Immunol Methods 89(1):123–130

    Article  CAS  PubMed  Google Scholar 

  27. El Hage A et al (2014) Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLoS Genet 10(10):e1004716

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rigby RE et al (2014) RNA:DNA hybrids are a novel molecular pattern sensed by TLR9. EMBO J 33(6):542–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koo CX et al (2015) RNA polymerase III regulates cytosolic RNA:DNA hybrids and intracellular microRNA expression. J Biol Chem 290(12):7463–7473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu Z et al (2006) An antibody-based microarray assay for small RNA detection. Nucleic Acids Res 34(7):e52

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chan YA et al (2014) Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet 10(4):e1004288

    Article  PubMed  PubMed Central  Google Scholar 

  32. Legros P et al (2014) RNA processing factors Swd2.2 and Sen1 antagonize RNA Pol III-dependent transcription and the localization of condensin at Pol III genes. PLoS Genet 10(11):e1004794

    Article  PubMed  PubMed Central  Google Scholar 

  33. Saini N et al (2017) APOBEC3B cytidine deaminase targets the non-transcribed strand of tRNA genes in yeast. DNA Repair (Amst) 53:4–14

    Article  CAS  Google Scholar 

  34. Mischo HE et al (2011) Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41(1):21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alzu A et al (2012) Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 151(4):835–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grzechnik P, Gdula MR, Proudfoot NJ (2015) Pcf11 orchestrates transcription termination pathways in yeast. Genes Dev 29(8):849–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Balk B et al (2013) Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 20(10):1199–1205

    Article  CAS  PubMed  Google Scholar 

  38. Pfeiffer V et al (2013) The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO J 32(21):2861–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cloutier SC et al (2016) Regulated formation of lncRNA-DNA hybrids enables faster transcriptional induction and environmental adaptation. Mol Cell 61(3):393–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keskin H, Meers C, Storici F (2016) Transcript RNA supports precise repair of its own DNA gene. RNA Biol 13(2):157–165

    Article  PubMed  Google Scholar 

  41. Ohle C et al (2016) Transient RNA-DNA hybrids are required for efficient double-strand break repair. Cell 167(4):1001–1013.e7. https://doi.org/10.1016/j.cell.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  42. Holmes JB et al (2015) Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication. Proc Natl Acad Sci U S A 112(30):9334–9339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wahba L et al (2016) S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev 30(11):1327–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanz LA et al (2016) Prevalent, dynamic, and conserved R-loop structures associate with specific Epigenomic signatures in mammals. Mol Cell 63(1):167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chedin F (2016) Nascent connections: R-loops and chromatin patterning. Trends Genet 32(12):828–838

    Article  CAS  PubMed  Google Scholar 

  46. Santos-Pereira JM et al (2013) The Npl3 hnRNP prevents R-loop-mediated transcription-replication conflicts and genome instability. Genes Dev 27(22):2445–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim N, Jinks-Robertson S (2012) Transcription as a source of genome instability. Nat Rev Genet 13(3):204–214

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang IX et al (2016) RNA-DNA sequence differences in Saccharomyces cerevisiae. Genome Res 26(11):1544–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Phillips DD et al (2013) The sub-nanomolar binding of DNA-RNA hybrids by the single-chain Fv fragment of antibody S9.6. J Mol Recognit 26(8):376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aparicio O et al (2005) Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Mol Biol Chapter 21: p. Unit 21 3

    Google Scholar 

  51. Ginno PA et al (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45(6):814–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao DY et al (2016) SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature 529(7584):48–53

    Article  PubMed  Google Scholar 

  53. Brown TA, Tkachuk AN, Clayton DA (2008) Native R-loops persist throughout the mouse mitochondrial DNA genome. J Biol Chem 283(52):36743–36751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Kim Kotovic for initial help with the ChIP technique, members of Jean Beggs lab for giving us access to the bioruptor PICO, and Shaun Webb for help with bioinformatics analysis. We thank Andres Aguilera, Frederic Chedin, Martin Reijns, and Leonel Sanz for sharing protocols and/or reagents. We thank Frederic Chedin, Benoit Palancade, and Ralf Wellinger for critically reading the manuscript. We apologise to the colleagues whose work is not cited in this chapter due to space constraints. This work was supported by a Wellcome Trust Fellowship to DT (077248) and by core funding to the Wellcome Trust Centre for Cell Biology (092076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz El Hage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

El Hage, A., Tollervey, D. (2018). Immunoprecipitation of RNA:DNA Hybrids from Budding Yeast. In: Drolet, M. (eds) DNA Topoisomerases. Methods in Molecular Biology, vol 1703. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7459-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7459-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7458-0

  • Online ISBN: 978-1-4939-7459-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics