Skip to main content

Fluoroquinolone-Gyrase-DNA Cleaved Complexes

  • Protocol
  • First Online:
DNA Topoisomerases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1703))

Abstract

The quinolones are potent antibacterials that act by forming complexes with DNA and either gyrase or topoisomerase IV. These ternary complexes, called cleaved complexes because the DNA moiety is broken, block replication, transcription, and bacterial growth. Cleaved complexes readily form in vitro when gyrase, plasmid DNA, and quinolone are combined and incubated; complexes are detected by the linearization of plasmid DNA, generally assayed by gel electrophoresis. The stability of the complexes can be assessed by treatment with EDTA, high temperature, or dilution to dissociate the complexes and reseal the DNA moiety. Properties of the complexes are sensitive to quinolone structure and to topoisomerase amino acid substitutions associated with quinolone resistance. Consequently, studies of cleaved complexes can be used to identify improvements in quinolone structure and to understand the biochemical basis of target-based resistance. Cleaved complexes can also be detected in quinolone-treated bacterial cells by their ability to rapidly block DNA replication and to cause chromosome fragmentation; they can even be recovered from lysed cells following CsCl density-gradient centrifugation. Thus, in vivo and cell-fractionation tests are available for assessing the biological relevance of work with purified components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suda K, Hicks L, Roberts R, RJHunkler DL (2013) A national evaluation of antibiotic expenditures by healthcare setting in the United States, 2009. J Antimicrob Chemother 68:715–718

    Article  CAS  PubMed  Google Scholar 

  2. Gellert M, Mizuuchi K, O'Dea MH, Itoh T, Tomizawa JI (1977) Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci U S A 74:4772–4776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sugino A, Peebles C, Kruezer K, Cozzarelli N (1977) Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci U S A 74:4767–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Snyder M, Drlica K (1979) DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid. J Mol Biol 131:287–302

    Article  CAS  PubMed  Google Scholar 

  5. Kato J, Nishimura Y, Imamura R, Niki H, Hiraga S, Suzuki H (1990) New topoisomerase essential for chromosome segregation in E. coli. Cell 63:393–404

    Article  CAS  PubMed  Google Scholar 

  6. Hiasa H, Yousef D, Marians K (1996) DNA strand cleavage is required for replication fork arrest by a frozen topoisomerase-quinolone-DNA ternary complex. J Biol Chem 271:26424–26429

    Article  CAS  PubMed  Google Scholar 

  7. Wentzell L, Maxwell A (2000) The complex of DNA gyrase and quinolone drugs on DNA forms a barrier to the T7 DNA polymerase replication complex. J Mol Biol 304:779–791

    Article  CAS  PubMed  Google Scholar 

  8. Willmott CJR, Critchlow SE, Eperon IC, Maxwell A (1994) The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol 242:351–363

    Article  CAS  PubMed  Google Scholar 

  9. Manes SH, Pruss GJ, Drlica K (1983) Inhibition of RNA synthesis by oxolinic acid is unrelated to average DNA supercoiling. J Bacteriol 155:420–423

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chow R, Dougherty T, Fraimow H, Bellin E, Miller M (1988) Association between early inhibition of DNA synthesis and the MICs and MBCs of carboxyquinolone antimicrobial agents for wild-type and mutant [gyrA nfxB(ompF) acrA] Escherichia coli K-12. Antimicrob Agents Chemother 32(8):1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Drlica K, Malik M, Kerns RJ, Zhao X (2008) Quinolone-mediated bacterial death. Antimicrob Agents Chemother 52:385–392

    Article  CAS  PubMed  Google Scholar 

  12. Zhao X, Drlica K (2014) Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol 21:1–6

    Article  PubMed  Google Scholar 

  13. Dwyer D, Collins J, Walker G (2015) Unraveling the physiological complexities of antibiotic lethality. Annu Rev Pharmacol Toxicol 55:9.1–9.20

    Article  Google Scholar 

  14. Pan XS, Dias M, Palumbo M, Fisher LM (2008) Clerocidin selectively modifies the gyrase-DNA gate to induce irreversible and reversible DNA damage. Nucleic Acids Res 36:5516–5529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Drlica K, Mustaev A, Towle T, Luan G, Kerns R, Berger J (2014) Bypassing fluoroquinolone resistance with quinazolinediones: studies of drug-gyrase-DNA complexes having implications for drug design. ACS Chem Biol 9:2895–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aldred K, McPherson S, Wang P, Kerns R, Graves D, Turnbough C et al (2012) Drug interactions with Bacillus anthracis topoisomerase IV: biochemical basis for quinolone action and resistance. Biochemistry 51:370–381

    Article  CAS  PubMed  Google Scholar 

  17. Mustaev A, Malik M, Zhao X, Kurepina N, Luan G, Oppegard L et al (2014) Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding. J Biol Chem 289:12300–12312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aldred K, McPherson S, Turnbough C, Kerns R, Osheroff N (2013) Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Res 41:4628–4639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blower TR, Williamson BH, Kerns RJ, Berger JM (2016) Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 113:1706–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Laponogov I, Pan X, Veselkov D, McAuley K, Fisher L, Sanderson M (2010) Structural basis of gate-DNA breakage and resealing by type II topoisomerases. PLoS One 5:e11338

    Article  PubMed  PubMed Central  Google Scholar 

  21. Laponogov I, Sohi M, Veselkov D, Pan X, Sawhney R, Thompson A et al (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nat Struct Mol Biol 16:667–669

    Article  CAS  PubMed  Google Scholar 

  22. Bax B, Chan P, Eggleston D, Fosberry A, Gentry D, Gorrec F et al (2010) Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466:935–940

    Article  PubMed  Google Scholar 

  23. Wohlkonig A, Chan P, Fosberry A, Homes P, Huang J, Kranz M et al (2010) Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat Struct Mol Biol 17:1152–1153

    Article  CAS  PubMed  Google Scholar 

  24. Schoeffler A, May A, Berger J (2010) A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function. Nucleic Acids Res 38:7830–7844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cohen S, Chang A, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69:2110–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oppegard LM, Streck K, Rosen J, Shwanz HA, Drlica K, Kerns RJ et al (2010) Comparison of in vitro activities of fluoroquinolone-like 2,4- and 1.3-diones. Antimicrob Agents Chemother 54:3011–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goss W, Deitz W, Cook T (1965) Mechanism of action of nalidixic acid on Escherichia coli. II. Inhibition of deoxyribonucleic acid synthesis. J Bacteriol 89:1068–1074

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the following for critical comments on the manuscript: Arkady Mustaev and Marila Gennaro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Drlica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luan, G., Drlica, K. (2018). Fluoroquinolone-Gyrase-DNA Cleaved Complexes. In: Drolet, M. (eds) DNA Topoisomerases. Methods in Molecular Biology, vol 1703. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7459-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7459-7_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7458-0

  • Online ISBN: 978-1-4939-7459-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics