Skip to main content

In Vitro and In Vivo Methods for Studying Retinal Ganglion Cell Survival and Optic Nerve Regeneration

  • Protocol
  • First Online:
Glaucoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1695))

Abstract

Glaucoma is marked by a progressive degeneration of the optic nerve and delayed loss of retinal ganglion cells (RGCs), the projection neurons of the eye. Because RGCs are not replaced and because surviving RGCs cannot regenerate their axons, the visual loss in glaucoma is largely irreversible. Here, we describe methods to evaluate treatments that may be beneficial for treating glaucoma using in vitro cell culture models (immunopanning to isolate neonatal RGCs, dissociated mature retinal neurons, retinal explants) and in vivo models that test potential treatments or investigate underlying molecular mechanisms in an intact system. Potentially, use of these models can help investigators continue to improve treatments to preserve RGCs and restore visual function in patients with glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramon Y, Cajal S (1991) Degeneration and regeneration in of the nervous system (trans: May RM). Oxford University Press, New York

    Google Scholar 

  2. Bray GM, Vidal-Sanz M, Aguayo AJ (1987) Regeneration of axons from the central nervous system of adult rats. Prog Brain Res 71:373–379

    Article  CAS  PubMed  Google Scholar 

  3. Lye-Barthel M, Sun D, Jakobs TC (2013) Morphology of astrocytes in a glaucomatous optic nerve. Invest Ophthalmol Vis Sci 54(2):909–917. https://doi.org/10.1167/iovs.12-10109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Matsumoto H, Murakami Y, Kataoka K, Notomi S, Mantopoulos D, Trichonas G, Miller JW, Gregory MS, Ksander BR, Marshak-Rothstein A, Vavvas DG (2015) Membrane-bound and soluble Fas ligands have opposite functions in photoreceptor cell death following separation from the retinal pigment epithelium. Cell Death Dis 6:e1986. https://doi.org/10.1038/cddis.2015.334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roh M, Zhang Y, Murakami Y, Thanos A, Lee SC, Vavvas DG, Benowitz LI, Miller JW (2012) Etanercept, a widely used inhibitor of tumor necrosis factor-alpha (TNF-alpha), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One 7(7):e40065. https://doi.org/10.1371/journal.pone.0040065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barres BA, Silverstein BE, Corey DP, Chun LL (1988) Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1(9):791–803

    Article  CAS  PubMed  Google Scholar 

  7. Yin Y, Cui Q, Gilbert HY, Yang Y, Yang Z, Berlinicke C, Li Z, Zaverucha-do-Valle C, He H, Petkova V, Zack DJ, Benowitz LI (2009) Oncomodulin links inflammation to optic nerve regeneration. Proc Natl Acad Sci U S A 106(46):19587–19592. https://doi.org/10.1073/pnas.0907085106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R, Benowitz LI (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9(6):843–852. https://doi.org/10.1038/nn1701

    Article  CAS  PubMed  Google Scholar 

  9. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–51

    Article  CAS  PubMed  Google Scholar 

  10. Wang SW, Mu X, Bowers WJ, Klein WH (2002) Retinal ganglion cell differentiation in cultured mouse retinal explants. Methods 28(4):448–456

    Article  CAS  PubMed  Google Scholar 

  11. Manabe S, Kashii S, Honda Y, Yamamoto R, Katsuki H, Akaike A (2002) Quantification of axotomized ganglion cell death by explant culture of the rat retina. Neurosci Lett 334(1):33–36

    Article  CAS  PubMed  Google Scholar 

  12. Lagreze WA, Pielen A, Steingart R, Schlunck G, Hofmann HD, Gozes I, Kirsch M (2005) The peptides ADNF-9 and NAP increase survival and neurite outgrowth of rat retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 46(3):933–938. https://doi.org/10.1167/iovs.04-0766

    Article  PubMed  Google Scholar 

  13. Toops KA, Berlinicke C, Zack DJ, Nickells RW (2012) Hydrocortisone stimulates neurite outgrowth from mouse retinal explants by modulating macroglial activity. Invest Ophthalmol Vis Sci 53(4):2046–2061. https://doi.org/10.1167/iovs.11-8646

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gasparini L, Crowther RA, Martin KR, Berg N, Coleman M, Goedert M, Spillantini MG (2011) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32(3):419–433. https://doi.org/10.1016/j.neurobiolaging.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  15. Bull ND, Johnson TV, Welsapar G, DeKorver NW, Tomarev SI, Martin KR (2011) Use of an adult rat retinal explant model for screening of potential retinal ganglion cell neuroprotective therapies. Invest Ophthalmol Vis Sci 52(6):3309–3320. https://doi.org/10.1167/iovs.10-6873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. So KF, Aguayo AJ (1985) Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats. Brain Res 328(2):349–354

    Article  CAS  PubMed  Google Scholar 

  17. Berry M, Carlile J, Hunter A (1996) Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol 25(2):147–170

    Article  CAS  PubMed  Google Scholar 

  18. Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI (2000) Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 20(12):4615–4626

    CAS  PubMed  Google Scholar 

  19. Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20(2):84–91

    Article  CAS  PubMed  Google Scholar 

  20. Skene JH (1989) Axonal growth-associated proteins. Annu Rev Neurosci 12:127–156. https://doi.org/10.1146/annurev.ne.12.030189.001015

    Article  CAS  PubMed  Google Scholar 

  21. Kurimoto T, Yin Y, Omura K, Gilbert HY, Kim D, Cen LP, Moko L, Kugler S, Benowitz LI (2010) Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci 30(46):15654–15663. https://doi.org/10.1523/JNEUROSCI.4340-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Lima S, Koriyama Y, Kurimoto T, Oliveira JT, Yin Y, Li Y, Gilbert HY, Fagiolini M, Martinez AM, Benowitz L (2012) Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci U S A 109(23):9149–9154. https://doi.org/10.1073/pnas.1119449109

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326(5950):298–301. https://doi.org/10.1126/science.1175737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo X, Yungher B, Park KK (2014) Application of tissue clearing and light sheet fluorescence microscopy to assess optic nerve regeneration in unsectioned tissues. Methods Mol Biol 1162:209–217. https://doi.org/10.1007/978-1-4939-0777-9_17

    Article  CAS  PubMed  Google Scholar 

  25. Potts RA, Dreher B, Bennett MR (1982) The loss of ganglion cells in the developing retina of the rat. Brain Res 255(3):481–486

    Article  CAS  PubMed  Google Scholar 

  26. Selles-Navarro I, Ellezam B, Fajardo R, Latour M, McKerracher L (2001) Retinal ganglion cell and nonneuronal cell responses to a microcrush lesion of adult rat optic nerve. Exp Neurol 167(2):282–289. https://doi.org/10.1006/exnr.2000.7573

    Article  CAS  PubMed  Google Scholar 

  27. Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, Benowitz LI (2003) Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 23(6):2284–2293

    CAS  PubMed  Google Scholar 

  28. Park K, Luo JM, Hisheh S, Harvey AR, Cui Q (2004) Cellular mechanisms associated with spontaneous and ciliary neurotrophic factor-cAMP-induced survival and axonal regeneration of adult retinal ganglion cells. J Neurosci 24(48):10806–10815. https://doi.org/10.1523/JNEUROSCI.3532-04.2004

    Article  CAS  PubMed  Google Scholar 

  29. Cui Q, Yip HK, Zhao RC, So KF, Harvey AR (2003) Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol Cell Neurosci 22(1):49–61

    Article  CAS  PubMed  Google Scholar 

  30. Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Nieto-Lopez L, Canovas-Martinez I, Salinas-Navarro M, Vidal-Sanz M, Agudo M (2009) Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci 50(8):3860–3868. https://doi.org/10.1167/iovs.08-3267

    Article  PubMed  Google Scholar 

  31. Yukita M, Machida S, Nishiguchi KM, Tsuda S, Yokoyama Y, Yasuda M, Maruyama K, Nakazawa T (2015) Molecular, anatomical and functional changes in the retinal ganglion cells after optic nerve crush in mice. Doc Ophthalmol 130(2):149–156. https://doi.org/10.1007/s10633-014-9478-2

    Article  PubMed  Google Scholar 

  32. Rodriguez AR, de Sevilla Muller LP, Brecha NC (2014) The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol 522(6):1411–1443. https://doi.org/10.1002/cne.23521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Benowitz LI, Apostolides PJ, Perrone-Bizzozero N, Finklestein SP, Zwiers H (1988) Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain. J Neurosci 8(1):339–352

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqin Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yin, Y., Benowitz, L.I. (2018). In Vitro and In Vivo Methods for Studying Retinal Ganglion Cell Survival and Optic Nerve Regeneration. In: Jakobs, T. (eds) Glaucoma. Methods in Molecular Biology, vol 1695. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7407-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7407-8_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7406-1

  • Online ISBN: 978-1-4939-7407-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics