Skip to main content

Xenograft as In Vivo Experimental Model

  • Protocol
  • First Online:
Cancer Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1692))

Abstract

The identification of experimental models that recapitulate human cancers designed to predict patient clinical response to therapies is a major break in oncology. Cancer stem cells (CSCs) represent a small tumor cell population responsible for drug resistance, where their effective killing may lead to identifying better treatment options. While the CSCs hypothesis highlights the need for a specific tumor target, patient-derived xenografts (PDXs) should also be considered for drug development as they better represent tumor heterogeneity and the environment in which a tumor develops.

Manuela Porru and Luca Pompili are co-authors to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubin EH, Gilliland DG (2012) Drug development and clinical trials-the path to an approved cancer drug. Nat Rev Clin Oncol 9:215–222

    Article  CAS  PubMed  Google Scholar 

  2. Kirschbaum A, Geisse NC, Sister T J, Meyer LM (1950) Effect of certain folic acid antagonists on transplanted myeloid and lymphoid leukemias of the F strain of mice. Cancer Res 10(12):762–768

    CAS  PubMed  Google Scholar 

  3. Hutchinson L, Kirk R (2011) High drug attrition rates–where are we going wrong? Nat Rev Clin Oncol 8(4):189–190. doi:10.1038/nrclinonc.2011.34

    Article  PubMed  Google Scholar 

  4. Skrbo N, Tenstad E, Mælandsmo GM, Sørlie T, Andersen K (2015) From autonomy to community; new perspectives on tumorigenicity and therapy resistance. Cancer Treat Rev 41(10):809–813. doi:10.1016/j.ctrv.2015.10.004. Epub 2015 Oct 20

    Article  PubMed  Google Scholar 

  5. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  6. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  7. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ (1997) Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89:3104–3112

    CAS  PubMed  Google Scholar 

  8. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011. doi:10.1158/0008-5472.CAN-04-1364

    Article  CAS  PubMed  Google Scholar 

  10. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598. doi:10.1038/nature07567. [nature07567 [pii]]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10(6):717–728. doi:10.1016/j.stem.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  12. Rycaj K, Tang DG (2015) Cell-of-origin of cancer versus cancer stem cells: assays and interpretations. Cancer Res 75(19):4003–4011. doi:10.1158/0008-5472.CAN-15-0798. Epub 2015 Aug 19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9(6):338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reyal F, Guyader C, Decraene C, Lucchesi C, Auger N, Assayag F, De Plater L, Gentien D, Poupon MF, Cottu P, De Cremoux P, Gestraud P, Vincent-Salomon A, Fontaine JJ, Roman-Roman S, Delattre O, Decaudin D, Marangoni E (2012) Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res 14(1):R11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao X, Liu Z, Yu L, Zhang Y, Baxter P, Voicu H, Gurusiddappa S, Luan J, Su JM, Leung HC, Li XN (2012) Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro Oncol 14(5):574–583. doi:10.1093/neuonc/nos061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Topp MD, Hartley L, Cook M, Heong V, Boehm E, McShane L, Pyman J, McNally O, Ananda S, Harrell M, Etemadmoghadam D, Galletta L, Alsop K, Mitchell G, Fox SB, Kerr JB, Hutt KJ, Kaufmann SH, Swisher EM, Bowtell DD, Wakefield MJ, Scott CL, Australian Ovarian Cancer Study (2014) Molecular correlates of platinum response in human high-grade serous ovarian cancer patient-derived xenografts. Mol Oncol 8(3):656–668. doi:10.1016/j.molonc.2014.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nunes M, Vrignaud P, Vacher S, Richon S, Lievre A, Cacheux W, Weiswald LB, Massonnet G, Chatean-Joubert S, Nicolas A, Dib C, Zhang W, Watters J, Bergstrom D, Roman-Roman S, Bieche I, Dangles-Marie V (2015) Evaluating patient-derived colorectal cancer-xenografts as preclinical models by comparison with patient clinical data. Cancer Res 75(8):1560–1566. pii: canres.1590.201

    Article  CAS  PubMed  Google Scholar 

  18. Wang JC, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15:494–501

    Article  CAS  PubMed  Google Scholar 

  19. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  20. Porter EH, Berry RJ (1964) The efficient design of transplantable tumour assays. Br J Cancer 17:583–595

    Article  Google Scholar 

  21. Jin K, Teng L, Shen Y, He K, Xu Z, Li G (2010) Patient-derived human tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol 12:473–480

    Article  PubMed  Google Scholar 

  22. Wartha K, Herting F, Hasmann M (2014) Fit-for purpose use of mouse models to improve predictivity of cancer therapeutics evaluation. Pharmacol Ther 142:351–361

    Article  CAS  PubMed  Google Scholar 

  23. Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, Roman-Roman S, Seoane J, Trusolino L, Villanueva A, EurOPDX Consortium (2014) Patient-derived xenografts models: an emerging platform for translational cancer research. AACR J 4(9):998–1013

    CAS  Google Scholar 

  24. Porru M, Artuso S, Salvati E, Bianco A, Franceschin M, Diodoro MG, Passeri D, Orlandi A, Savorani F, D'Incalci M, Biroccio A, Leonetti C (2015) Targeting G-Quadruplex DNA structures by EMICORON has a strong antitumor efficacy against advanced models of human colon cancer. Mol Cancer Ther 14(11):2541–2551

    Article  CAS  PubMed  Google Scholar 

  25. Damhofer H, Ebbing EA, Steins A, Welling L, Tol JA, Krishnadath KK, van Leusden T, van de Vijver M, Besselink MG, Bush OR, van Berge Henegouwen MI, van Delden O, Meijer SL, Dijk F, Medema JP, van Laarhoven HW, Bijlsma MF (2015) Establishment of patient-derived xenograft models and cell lines for malignancies of the upper gastrointestinal tract. J Transl Med 13:115

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M, Wong H, Fuqua SW, Contreras A, Gutierrez C, Huang J, Mao S, Pavlick AC, Froehlich AM, Wu MF, Tsimelzon A, Hilsenbeck SG, Chen ES, Zuloaga P, Shaw CA, Rimawi MF, Perou CM, Mills GB, Chang JC, Lewis MT (2013) A renewable tissue of phenotipycally stable, biologically and ethnically diverse, patient-derived human breast cancer Xenograft models. Cancer Res 73:4885–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2(2):247–225

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from Italian Association for Cancer Research AIRC IG #18637 to C. Leonetti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Leonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Porru, M., Pompili, L., Caruso, C., Leonetti, C. (2018). Xenograft as In Vivo Experimental Model. In: Papaccio, G., Desiderio, V. (eds) Cancer Stem Cells. Methods in Molecular Biology, vol 1692. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7401-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7401-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7400-9

  • Online ISBN: 978-1-4939-7401-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics