Skip to main content

The Role of CD44 and Cancer Stem Cells

  • Protocol
  • First Online:
Cancer Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1692))

Abstract

Solid tumors are composed of mutually interacting cancer cells and tumor microenvironment. Many environmental components, such as extracellular matrix (ECM), mesenchymal stem cells, endothelial and immune cells, and various growth factors and cytokines, provide signals, either stimulatory or inhibitory, to cancer cells and determine their fates. Meanwhile, cancer cells can also educate surrounding cells or tissues to undergo changes that are in favorable of tumor progression. CD44, as a transmembrane receptor for hyaluronic acid (HA) and many other ECM components and a coreceptor for growth factors and cytokines, is a critical cell surface molecule that can sense, integrate, and transduce cellular microenvironmental signals to membrane-associated cytoskeletal proteins or to cell nucleus to regulate a variety of gene expressions that govern cell behaviors. Mounting evidence suggests that CD44, particularly CD44v isoforms, are cancer stem cell (CSC) markers and critical regulators of cancer stemness, including self-renewal, tumor initiation, and metastasis. Thus, CD44 is widely used alone or in combination with other cell surface markers to isolate or enrich CSCs through fluorescence-activated cell sorting of dissociated single cells that originate from the patient, xenograft tumor tissues, or tumor cell cultures. Sorted cells are cultured in a specialized culture medium for spheroid formation or inoculated into immunodeficient mice for the analysis of tumorigenic or metastatic potential. In this chapter, detailed experimental methods regarding CD44+ tumor cell isolation, spheroid culture, and characterization will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18(6):884–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822–829

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein LA, Zhou DF, Picker LJ, Minty CN, Bargatze RF, Ding JF et al (1989) A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 56(6):1063–1072

    Article  CAS  PubMed  Google Scholar 

  4. Grimme HU, Termeer CC, Bennett KL, Weiss JM, Schopf E, Aruffo A et al (1999) Colocalization of basic fibroblast growth factor and CD44 isoforms containing the variably spliced exon v3 (CD44v3) in normal skin and in epidermal skin cancers. Br J Dermatol 141(5):824–832

    Article  CAS  PubMed  Google Scholar 

  5. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell 19(3):387–400

    Article  CAS  PubMed  Google Scholar 

  6. Cheng C, Yaffe MB, Sharp PA (2006) A positive feedback loop couples Ras activation and CD44 alternative splicing. Genes Dev 20(13):1715–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weg-Remers S, Ponta H, Herrlich P, Konig H (2001) Regulation of alternative pre-mRNA splicing by the ERK MAP-kinase pathway. EMBO J 20(15):4194–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsumura Y, Tarin D (1992) Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet (London, England) 340(8827):1053–1058

    Article  CAS  Google Scholar 

  9. Yan Y, Zuo X, Wei D (2015) Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med 4(9):1033–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R et al (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem cells (Dayton, Ohio) 27(5):1006–1020

    Article  CAS  Google Scholar 

  12. Su YJ, Lai HM, Chang YW, Chen GY, Lee JL (2011) Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J 30(15):3186–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kidwai F, Costea DE, Hutchison I, Mackenzie I (2013) The effects of CD44 down-regulation on stem cell properties of head and neck cancer cell lines. J Oral Pathol Med 42(9):682–690

    Article  CAS  PubMed  Google Scholar 

  14. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M et al (2014) CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14(3):342–356

    Article  CAS  PubMed  Google Scholar 

  15. Lau WM, Teng E, Chong HS, Lopez KA, Tay AY, Salto-Tellez M et al (2014) CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res 74(9):2630–2641

    Article  CAS  PubMed  Google Scholar 

  16. Bourguignon LY, Wong G, Earle C, Chen L (2012) Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem 287(39):32800–32824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li C, Wu JJ, Hynes M, Dosch J, Sarkar B, Welling TH et al (2011) c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 141(6):2218–27.e5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Eric A Goodoff for helpful comments. The work was supported in part by grants 1R01CA195651 and 1R01CA198090; and grant R03CA124523 from the National Cancer Institute, NIH, and grants from the American Institute for Cancer Research (#10A073), Texas Medical Center Digestive Disease Center, and M.D. Anderson Cancer Center Institutional Research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoyan Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, L., Zuo, X., Xie, K., Wei, D. (2018). The Role of CD44 and Cancer Stem Cells. In: Papaccio, G., Desiderio, V. (eds) Cancer Stem Cells. Methods in Molecular Biology, vol 1692. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7401-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7401-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7400-9

  • Online ISBN: 978-1-4939-7401-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics