Skip to main content

Filamentous Bacteriophage Viruses: Preparation, Magic-Angle Spinning Solid-State NMR Experiments, and Structure Determination

  • Protocol
  • First Online:
Protein NMR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1688))

Abstract

Filamentous bacteriophages are elongated semi-flexible viruses that infect bacteria. They consist of a circular single-stranded DNA (ssDNA) wrapped by a capsid consisting of thousands of copies of a major coat protein subunit. Given the increasing number of discovered phages and the existence of only a handful of structures, the development of methods for phage structure determination is valuable for biophysics and structural virology. In recent years, we developed and applied techniques to elucidate the 3D atomic-resolution structures of intact bacteriophages using experimental magic-angle spinning (MAS) solid-state NMR data. The flexibility in sample preparation – precipitated homogeneous solids – and the fact that ssNMR presents no limitation on the size, weight or morphology of the system under study makes it an ideal approach to study phage systems in detail.

In this contribution, we describe approaches to prepare isotopically carbon-13 and nitrogen-15 enriched intact phage samples in high yield and purity, and we present experimental MAS NMR methods to study the capsid secondary and tertiary structure, and the DNA-capsid interface. Protocols for the capsid structure determination using the Rosetta modeling software are provided. Specific examples are given from studies of the M13 and fd filamentous bacteriophage viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russel M (1991) Filamentous phage assembly. Environ Microbiol 5:1607–1613

    CAS  Google Scholar 

  2. Day LA (2008) Inoviruses. In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology. Academic, Oxford, UK, pp 117–124

    Google Scholar 

  3. Marvin DA (1998) Filamentous phage structure, infection and assembly. Curr Opin Struct Biol 8:150–158

    Article  CAS  PubMed  Google Scholar 

  4. Welsh LC, Symmons MF, Marvin DA (2000) The molecular structure and structural transition of the α-helical capsid in filamentous bacteriophage Pf1. Acta Crystallogr D Biol Crystallogr 56:137–150

    Article  CAS  PubMed  Google Scholar 

  5. Marvin DA, Welsh LC, Symmons MF, Scott WRP, Straus SK (2006) Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to X-ray fibre diffraction and solid-state NMR data supports specific models of phage assembly at the bacterial membrane. J Mol Biol 355:294–309

    Article  CAS  PubMed  Google Scholar 

  6. Zeri AC, Mesleh MF, Nevzorov AA, Opella SJ (2003) Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy. Proc Natl Acad Sci USA 100:6458–6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morag O, Sgourakis NG, Baker D, Goldbourt A (2015) The NMR–Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope. Proc Natl Acad Sci USA 112:971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sergeyev IV, Bahri S, Day LA, McDermott AE (2014) Pf1 bacteriophage hydration by magic angle spinning solid-state NMR. J Chem Phys 141:22D533

    Article  PubMed  Google Scholar 

  9. Lorieau JL, Day LA, McDermott AE (2008) Conformational dynamics of an intact virus: order parameters for the coat protein of Pf1 bacteriophage. Proc Natl Acad Sci USA 105:10366–10371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goldbourt A, Day LA, McDermott AE (2010) Intersubunit hydrophobic interactions in Pf1 filamentous phage. J Biol Chem 285:37051–37059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morag O, Abramov G, Goldbourt A (2011) Similarities and differences within members of the Ff family of filamentous bacteriophage viruses. J Phys Chem B 115:15370–15379

    Article  CAS  PubMed  Google Scholar 

  12. Abramov G, Morag O, Goldbourt A (2011) Magic-angle spinning NMR of a class I filamentous bacteriophage virus. J Phys Chem B 115:9671–9680

    Article  CAS  PubMed  Google Scholar 

  13. Morag O, Abramov G, Goldbourt A (2014) Complete chemical shift assignment of the ssDNA in the filamentous bacteriophage fd reports on its conformation and on its interface with the capsid shell. J Am Chem Soc 136:2292–2301

    Article  CAS  PubMed  Google Scholar 

  14. Lian L-Y, Middleton DA (2001) Labelling approaches for protein structural studies by solution-state and solid-state NMR. Prog Nucl Magn Reson Spectrosc 39:171–190

    Article  CAS  Google Scholar 

  15. Hoogstraten C, Johnson J (2008) Metabolic labeling: taking advantage of bacterial pathways to prepare spectroscopically useful isotope patterns in proteins and nucleic acids. Concepts Magn Reson A 32:34–55

    Article  Google Scholar 

  16. Stanek J, Andreas LB, Jaudzems K, Cala D, Lalli D, Bertarello A et al (2016) NMR spectroscopic assignment of backbone and side-chain protons in fully protonated proteins: microcrystals, sedimented assemblies, and amyloid fibrils. Angew Chem Int Ed 55:15504–15509

    Article  CAS  Google Scholar 

  17. van Wezenbeek P, Hulsebos TJM, Schoenmakers JGG (1980) Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. Gene 11:129–148

    Article  PubMed  Google Scholar 

  18. Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11

    Article  CAS  PubMed  Google Scholar 

  19. Day LA, Marzec CJ, Reisberg SA, Casadevall A (1988) DNA packing in filamentous bacteriophages. Annu Rev Biophys Biomol Struct 17:509–539

    Article  CAS  Google Scholar 

  20. Enshell-Seijffers D, Smelyanski L, Gershoni JM (2001) The rational design of a “type 88” genetically stable peptide display vector in the filamentous bacteriophage fd. Nucleic Acids Res 29:E50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bradley DE (1979) Morphology of pili determined by the N incompatibility group plasmid N3 and interaction with bacteriophages PR4 and IKe. Plasmid 2:632–636

    Article  CAS  PubMed  Google Scholar 

  22. Coetzee JN, Bradley DE, Hedges RW (1982) Phages Iα and I2-2: IncI plasmid-dependent bacteriophages. J Gen Microbiol 128:2797–2804

    CAS  PubMed  Google Scholar 

  23. Kuo T-T, Huang T-C, Chow T-Y (1969) A filamentous bacteriophage from Xanthomonas oryzae. Virology 39:548–555

    Article  CAS  PubMed  Google Scholar 

  24. Cai M, Huang Y, Sakaguchi K, Clore GM, Gronenborn AM, Craigie R (1998) An efficient and cost-effective isotope labeling protocol for proteins expressed in shape Escherichia coli. J Biomol NMR 11:97–102

    Article  CAS  PubMed  Google Scholar 

  25. Stringer JA, Bronnimann CE, Mullen CG, Zhou DH, Stellfox SA, Li Y et al (2005) Reduction of RF-induced sample heating with a scroll coil resonator structure for solid-state NMR probes. J Magn Reson 173:40–48

    Article  CAS  PubMed  Google Scholar 

  26. LeMaster D, Kushlan D (1996) Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis. J Am Chem Soc 7863:9255–9264

    Article  Google Scholar 

  27. Tomar S, Green MM, Day LA (2007) DNA-protein interactions as the source of large-length-scale chirality evident in the liquid crystal behavior of filamentous bacteriophages. J Am Chem Soc 129:3367–3375

    Article  CAS  PubMed  Google Scholar 

  28. Kostrikis LG, Liu DJ, Day LA (1994) Ultraviolet absorbance and circular dichroism of Pf1 virus: nucleotide/subunit ratio of unity, hyperchromic tyrosines and DNA bases, and high helicity in the subunits. Biochemistry 33:1694–1703

    Article  CAS  PubMed  Google Scholar 

  29. Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486

    Article  CAS  PubMed  Google Scholar 

  30. Pines A, Gibby MG, Waugh J (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590

    Article  CAS  Google Scholar 

  31. McDermott AE, Gu Z (1996) Carbon and nitrogen chemical shifts: applications to solid state proteins. In: Grant DM, Harris RK (eds) Encyclopaedia of nuclear magnetic resonance. Wiley, Chichester, pp 1137–1147

    Google Scholar 

  32. Shi L, Ladizhansky V (2012) Magic angle spinning solid-state NMR experiments for structural characterization of proteins. Meth Mol Biol 895:153–165

    Article  CAS  Google Scholar 

  33. Schaefer J, McKay R, Stejskal E (1979) Double-cross-polarization NMR of solids. J Magn Reson 34:443–447

    CAS  Google Scholar 

  34. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951

    Article  CAS  Google Scholar 

  35. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    Article  CAS  PubMed  Google Scholar 

  36. Detken A, Hardy EH, Ernst M, Meier BH (2002) Simple and efficient decoupling in magic-angle spinning solid-state NMR: the XiX scheme. Chem Phys Lett 356:298–304

    Article  CAS  Google Scholar 

  37. Madhu PK (2014) Heteronuclear spin decoupling in solid-state nuclear magnetic resonance: overview and outlook. Isr J Chem 54:25–38

    Article  CAS  Google Scholar 

  38. Thakur RS, Kurur ND, Madhu PK (2006) Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR. Chem Phys Lett 426:459–463

    Article  CAS  Google Scholar 

  39. Takegoshi K, Nakamura S, Terao T (2001) 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  CAS  Google Scholar 

  40. Goldbourt A (2009) Magic-angle spinning solid-state nuclear magnetic resonance: application to structural biology. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 1–27

    Google Scholar 

  41. Hou G, Yan S, Trébosc J, Amoureux J-P, Polenova T (2013) Broadband homonuclear correlation spectroscopy driven by combined R2v n sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. J Magn Reson 232:18–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

    Article  CAS  Google Scholar 

  43. Wilhelm M, Feng H, Tracht U, Spiess HW (1998) 2D CP/MAS 13C isotropic chemical shift correlation established by 1H spin diffusion. J Magn Reson 134:255–260

    Article  CAS  PubMed  Google Scholar 

  44. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J et al (2008) Biological magnetic resonance data bank. Nucleic Acids Res 36:D402–D408

    Article  CAS  PubMed  Google Scholar 

  45. Bennett AE, Griffin RG, Ok JH, Vega S (1992) Chemical shift correlation spectroscopy in rotating solids: radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96:8624

    Article  CAS  Google Scholar 

  46. Ishii Y (2001) 13C–13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114:8473–8483

    Article  CAS  Google Scholar 

  47. Pauli J, van Rossum B, Forster H, de Groot HJM, Oschkinat H (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha-spectrin SH3 domain. J Magn Reson 143:411–416

    Article  CAS  PubMed  Google Scholar 

  48. Lesage A, Bardet M, Emsley L (1999) Through-bond carbon-carbon connectivities in disordered solids by NMR. J Am Chem Soc 121:10987–10993

    Article  CAS  Google Scholar 

  49. Lesage A, Auger C (1997) Determination of through-bond carbon-carbon connectivities in solid-state NMR using the INADEQUATE experiment. J Am Chem Soc 7863:7867–7868

    Article  Google Scholar 

  50. Wang Y, Jardetzky O (2002) Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci 11:852–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grasso G, de Swiet T, Titman JJ (2002) Electronic structure of the polymer phase of CsC60: refocused INADEQUATE experiments. J Phys Chem B 106:8676–8680

    Article  CAS  Google Scholar 

  52. Cadars S, Sein J, Duma L, Lesage A, Pham TN, Baltisberger JH et al (2007) The refocused INADEQUATE MAS NMR experiment in multiple spin-systems: interpreting observed correlation peaks and optimising lineshapes. J Magn Reson 188:24–34

    Article  CAS  PubMed  Google Scholar 

  53. Hing A, Vega S, Schaefer J (1993) Measurement of heteronuclear dipolar coupling by transferred-echo double-resonance NMR. J Magn Reson A 103:151–162

    Article  CAS  Google Scholar 

  54. Abramov G, Goldbourt A (2014) Nucleotide-type chemical shift assignment of the encapsulated 40 kbp dsDNA in intact bacteriophage T7 by MAS solid-state NMR. J Biomol NMR 59:219–230

    Article  CAS  PubMed  Google Scholar 

  55. Sergeyev IV, Day LA, Goldbourt A, McDermott AE (2011) Chemical shifts for the unusual DNA structure in Pf1 bacteriophage from dynamic-nuclear-polarization-enhanced solid-state NMR spectroscopy. J Am Chem Soc 133:20208–20217

    Article  CAS  PubMed  Google Scholar 

  56. DeAzevedo ER, Saalwachter K, Pascui O, de Souza AA, Bonagamba TJ, Reichert D (2008) Intermediate motions as studied by solid-state separated local field NMR experiments. J Chem Phys 128:104505

    Article  PubMed  Google Scholar 

  57. Franks WT, Wylie BJ, Schmidt HLF, Nieuwkoop AJ, Mayrhofer R-M, Shah GJ et al. (2008) Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR. Proc Natl Acad Sci USA 105:4621–4626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Das R, André I, Shen Y, Wu Y, Lemak A, Bansal S et al. (2009) Simultaneous prediction of protein folding and docking at high resolution. Proc Natl Acad Sci USA 106:18978–18983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. DiMaio F, Leaver-Fay A, Bradley P, Baker D, André I (2011) Modeling symmetric macromolecular structures in Rosetta3. PLoS One 6:e20450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vernon R, Shen Y, Baker D, Lange OF (2013) Improved chemical shift based fragment selection for CS-Rosetta using Rosetta3 fragment picker. J Biomol NMR 57:117–127

    Article  CAS  PubMed  Google Scholar 

  61. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  CAS  PubMed  Google Scholar 

  62. Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C et al (2012) Atomic model of the type III secretion system needle. Nature 486:276–279

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Goldbourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Morag, O., Sgourakis, N.G., Abramov, G., Goldbourt, A. (2018). Filamentous Bacteriophage Viruses: Preparation, Magic-Angle Spinning Solid-State NMR Experiments, and Structure Determination. In: Ghose, R. (eds) Protein NMR. Methods in Molecular Biology, vol 1688. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7386-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7386-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7385-9

  • Online ISBN: 978-1-4939-7386-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics