Skip to main content

CW-EPR Spectroscopy and Site-Directed Spin Labeling to Study the Structural Dynamics of Ion Channels

  • Protocol
  • First Online:
Potassium Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1684))

Abstract

Continuous-wave electron paramagnetic resonance spectroscopy (CW-EPR) and site-directed spin labeling (SDSL) are proven experimental approaches to assess the structural dynamics of proteins in general (Hubbell et al., Curr Opin Struct Biol 8(5):649–656, 1998; Kazmier et al., Curr Opin Struct Biol 45:100–108, 2016; Perozo et al., Science 285(5424):73–78, 1999). These techniques have been particularly effective assessing the structure of integral membrane proteins embedded in a lipid bilayer (Cortes et al., J Gen Physiol 117(2):165–180, 2001; Cuello et al., Science 306(5695):491–495, 2004; Dalmas et al., Structure 18(7):868–878, 2010; Li et al., Proc Natl Acad Sci U S A 112(44):E5926–5935, 2015; Perozo et al., J Gen Physiol 118(2):193–206, 2001), as well as determining the conformational changes associated with their biological function (Kazmier et al., Curr Opin Struct Biol 45:100–108, 2016; Perozo et al., Science 285(5424):73–78, 1999; Arrigoni et al., Cell 164(5):922–936, 2016; Dalmas et al., Nat Commun 5:3590, 2014; Dong et al., Science 308(5724):1023–1028, 2005; Farrens et al., Science 274(5288):768–770, 1996; Perozo et al., Nat Struct Biol 5(6):459–469, 1998; Perozo et al., Nature 418(6901):942–948, 2002). In this chapter, we described a practical guide for the spin-labeling, liposome reconstitution, and CW-EPR measurements of the prototypical bacterial K+ channel, KcsA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kazmier K, Claxton DP, McHaourab HS (2016) Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes. Curr Opin Struct Biol 45:100–108

    Article  PubMed  Google Scholar 

  2. Perozo E, Cortes DM, Cuello LG (1999) Structural rearrangements underlying K+-channel activation gating. Science 285(5424):73–78

    Article  CAS  PubMed  Google Scholar 

  3. Cortes DM, Cuello LG, Perozo E (2001) Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117(2):165–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cuello LG, Cortes DM, Perozo E (2004) Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306(5695):491–495

    Article  CAS  PubMed  Google Scholar 

  5. Dalmas O et al (2010) Structural dynamics of the magnesium-bound conformation of CorA in a lipid bilayer. Structure 18(7):868–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Q et al (2015) Resting state of the human proton channel dimer in a lipid bilayer. Proc Natl Acad Sci U S A 112(44):E5926–E5935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perozo E, Kloda A, Cortes DM, Martinac B (2001) Site-directed spin-labeling analysis of reconstituted Mscl in the closed state. J Gen Physiol 118(2):193–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arrigoni C et al (2016) Unfolding of a temperature-sensitive domain controls voltage-gated channel activation. Cell 164(5):922–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dalmas O, Sompornpisut P, Bezanilla F, Perozo E (2014) Molecular mechanism of Mg2+-dependent gating in CorA. Nat Commun 5:3590

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dong J, Yang G, McHaourab HS (2005) Structural basis of energy transduction in the transport cycle of MsbA. Science 308(5724):1023–1028

    Article  CAS  PubMed  Google Scholar 

  11. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274(5288):768–770

    Article  CAS  PubMed  Google Scholar 

  12. Perozo E, Cortes DM, Cuello LG (1998) Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol 5(6):459–469

    Article  CAS  PubMed  Google Scholar 

  13. Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418(6901):942–948

    Article  CAS  PubMed  Google Scholar 

  14. Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9(9):696–703

    Article  CAS  PubMed  Google Scholar 

  15. Zhu S et al (2016) Mechanism of NMDA receptor inhibition and activation. Cell 165(3):704–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang Y et al (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423(6935):33–41

    Article  CAS  PubMed  Google Scholar 

  17. Mchaourab HS, Steed PR, Kazmier K (2011) Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. Structure 19(11):1549–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hubbell WL, Gross A, Langen R, Lietzow MA (1998) Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8(5):649–656

    Article  CAS  PubMed  Google Scholar 

  19. Mchaourab HS, Lietzow MA, Hideg K, Hubbell WL (1996) Motion of spin-labeled side chains in T4 lysozyme, correlation with protein structure and dynamics. Biochemistry 35(24):7692–7704

    Article  CAS  PubMed  Google Scholar 

  20. Tilegenova C, Vemulapally S, Cortes DM, Cuello LG (2016) An improved method for the cost-effective expression and purification of large quantities of KcsA. Protein Expr Purif 127:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cuello LG, Romero JG, Cortes DM, Perozo E (1998) pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry 37(10):3229–3236

    Article  CAS  PubMed  Google Scholar 

  22. Heginbotham L, Lu Z, Abramson T, MacKinnon R (1994) Mutations in the K+ channel signature sequence. Biophys J 66(4):1061–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86(7):2172–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huber R, Roth S, Rahmen N, Buchs J (2011) Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation. BMC Biotechnol 11:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by CMPR-TTUHSC seeding grant, American Heart Association [11SDG5440003], National Institute of Health [1RO1GM097159-01A1], and Welch Foundation [BI-1757].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis G. Cuello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tilegenova, C., Elberson, B.W., Marien Cortes, D., Cuello, L.G. (2018). CW-EPR Spectroscopy and Site-Directed Spin Labeling to Study the Structural Dynamics of Ion Channels. In: Shyng, SL., Valiyaveetil, F., Whorton, M. (eds) Potassium Channels. Methods in Molecular Biology, vol 1684. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7362-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7362-0_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7361-3

  • Online ISBN: 978-1-4939-7362-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics