Skip to main content

Anemia of Chronic Disease

  • Chapter
  • First Online:
Management of Anemia

Abstract

Anemia is a common condition observed in chronic disease states and in these chronically ill patients has a negative impact on their quality of life and survival. Various cytokines and acute phase proteins play important roles in the pathogenesis of the anemia of chronic disease (ACD) and alterations in the metabolism of iron via the molecules, hepcidin, and ferritin are largely responsible for the consequent anemia. Because it is a non-specific anemia, it is often difficult to diagnose properly. To diagnose this disorder, the physician must correlate the possible clinical pathways of the underlying disease with changes in altered iron metabolism and response to erythropoietin (EPO). It is important to rule out concomitant iron deficiency and other causes of anemia since failure to do so will in most cases lead to failure of standard therapy. Treatment options involve the use of erythropoiesis-stimulating agents, blood transfusion, and iron supplementation, in addition to treating the underlying disease. This discourse will review the pathogenesis of ACD, suggest current therapeutic options, and suggest future targets for therapeutic intervention such as chelating agents, hepcidin antagonists, and other agents affecting erythropoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACD:

Anemia of chronic disease

AMPK:

Adenosine monophosphate-activated kinase

BFU-E:

Burst-forming unit erythroid

BMP:

Bone morphogenetic protein

CFU-E:

Colony-forming unit erythroid

CFU-GEMM:

Colony-forming unit-granulocyte, erythrocyte, monocyte, megakaryocyte

CKD:

Chronic kidney disease

COX 2:

Cyclo-oxygenase 2

CRP:

C-reactive protein

DMT-1:

Divalent metal transporter 1

EPO:

Erythropoietin

EPOR:

Erythropoietin receptor

ERFE:

Erythroferrone

ESA:

Erythropoiesis-stimulating agents

ESRD:

End stage renal disease

FP:

Ferroportin

GDF:

Growth differentiation factor

GM-CSF:

Granulocyte-monocyte colony stimulating factor

Hb:

Hemoglobin

HLA:

Human leucocyte antigen

HMBGB1:

High mobility group box 1

HMGB:

High mobility group box

hsCRP:

High-sensitivity CRP

ID:

Iron deficiency

IDA:

Iron-deficiency anemia

IFN:

IFN

IgG:

Immunoglobulin G

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

IRE:

Iron-responsive element

IRE/IRP:

Iron-responsive element/iron regulatory protein

JAK/STAT:

JANUS-associated kinase/signal transducer and activator of transcription

LPI:

Labile plasma iron

LPS:

Lipopolysaccharides

MAPK:

Mitogen-activated protein kinases

Mb:

Myoglobin

mRNA:

Messenger RNA

NFκB:

Nuclear factor kappa B

NO:

Nitrous oxide

NTBI:

Non-transferrin bound iron

PAF:

Platelet activating factor

PDGF:

Platelet-derived growth factor

RA:

Rheumatoid arthritis

RES:

Reticuloendothelial system

ROS:

Reactive oxygen species

s-EPO:

Serum EPO levels

SLC4A1:

Soluble carrier family 4 (anion exchanger) member 1 (Diego blood group)

Smad:

Small body size/mothers against decapentaplegic

SOCS:

Suppressor of cytokine signaling

STAT:

Signal transducer and activator of transcription

TfR:

Transferrin receptor

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

VEGF:

Vascular endothelial growth factor

References

  1. Županić-Krmek, Sučić M, Bekić D. Anemia of chronic disease: illness or adaptive mechanism. Acta Clin Croat. 2014;53(3):348–54.

    PubMed  Google Scholar 

  2. Poggiali E, Migone de Amicis M, Motta I. Anemia of chronic disease: a unique defect of iron recycling for many different chronic diseases. Eur J Intern Med. 2014;25(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  3. Means RT Jr. Recent developments in the anemia of chronic disease. Curr Hematol Rep. 2003;2(2):116–21.

    PubMed  Google Scholar 

  4. Weiss G. Pathogenesis and treatment of anaemia of chronic disease. Blood Rev. 2002;16(2):87–96.

    Article  PubMed  Google Scholar 

  5. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352(10):1011–23.

    Article  CAS  PubMed  Google Scholar 

  6. Goodnough LT, Schrier SL. Evaluation and management of anemia in the elderly. Am J Hematol. 2014;89(1):88–96.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Weiss G. Iron metabolism in the anemia of chronic disease. Biochim Biophys Acta. 2009;1790(7):682–93.

    Article  CAS  PubMed  Google Scholar 

  8. Munoz M, Garcia-Erce JA, Remacha AF. Disorders of iron metabolism. Part 1: molecular basis of iron homoeostasis. J Clin Pathol. 2011;64(4):281–6.

    Article  CAS  PubMed  Google Scholar 

  9. Nemeth E. Iron regulation and erythropoiesis. Curr Opin Hematol. 2008;15(3):169–75.

    Article  CAS  PubMed  Google Scholar 

  10. Malyszko J, Tesar V, Macdougall IC. Neutrophil gelatinase-associated lipocalin and hepcidin: what do they have in common and is there a potential interaction? Kidney Blood Press Res. 2010;33(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  11. Mackenzie B, Garrick MD. Iron imports. II. Iron uptake at the apical membrane in the intestine. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G981–6.

    Article  CAS  PubMed  Google Scholar 

  12. Andrews NC. Forging a field: the golden age of iron biology. Blood. 2008;112(2):219–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramey G, Deschemin JC, Durel B, et al. Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica. 2010;95(3):501–4.

    Article  CAS  PubMed  Google Scholar 

  14. Babitt JL, Lin HY. Molecular mechanisms of hepcidin regulation: implications for the anemia of CKD. Am J Kidney Dis. 2010;55(4):726–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi SO, Cho YS, Kim HL, Park JW. ROS mediate the hypoxic repression of the hepcidin gene by inhibiting C/EBPalpha and STAT-3. Biochem Biophys Res Commun. 2007;356(1):312–7.

    Article  CAS  PubMed  Google Scholar 

  16. Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of mammalian iron metabolism. Cell. 2010;142(1):24–38.

    Article  CAS  PubMed  Google Scholar 

  17. Kaplan J, Ward DM, De Domenico I. The molecular basis of iron overload disorders and iron-linked anemias. Int J Hematol. 2011;93(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  18. Tussing-Humphreys L, Pusatcioglu C, Nemeth E, Braunschweig C. Rethinking iron regulation and assessment in iron deficiency, anemia of chronic disease, and obesity: introducing hepcidin. J Acad Nutr Diet. 2012;112(3):391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haase VH. Hypoxic regulation of erythropoiesis and iron metabolism. Am J Physiol Renal Physiol. 2010;299(1):F1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Obara N, Suzuki N, Kim K, et al. Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. Blood. 2008;111(10):5223–32.

    Article  CAS  PubMed  Google Scholar 

  21. Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 2013;27(1):41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brezis M, Heyman SN, Epstein FH. Determinants of intrarenal oxygenation. II. Hemodynamic effects. Am J Physiol. 1994;267(6 Pt 2):F1063–8.

    CAS  PubMed  Google Scholar 

  23. Gloviczki ML, Saad A, Textor SC. Blood oxygen level-dependent (BOLD) MRI analysis in atherosclerotic renal artery stenosis. Curr Opin Nephrol Hypertens. 2013;22(5):519–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eckardt KU, Koury ST, Tan CC, et al. Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney Int. 1993;43(4):815–23.

    Article  CAS  PubMed  Google Scholar 

  25. Elliott S, Pham E, Macdougall IC. Erythropoietins: a common mechanism of action. Exp Hematol. 2008;36(12):1573–84.

    Article  CAS  PubMed  Google Scholar 

  26. Jelkmann W. Molecular biology of erythropoietin. Intern Med. 2004;43(8):649–59.

    Article  CAS  PubMed  Google Scholar 

  27. Chen K, Liu J, Heck S, et al. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A. 2009;106(41):17413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kautz L, Jung G, Valore EV, et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thawani N, Tam M, Stevenson MM. STAT6-mediated suppression of erythropoiesis in an experimental model of malarial anemia. Haematologica. 2009;94(2):195–204.

    Article  CAS  PubMed  Google Scholar 

  30. Gaspar BL, Sharma P, Das R. Anemia in malignancies: pathogenetic and diagnostic considerations. Hematology. 2015;20(1):18–25.

    Article  PubMed  Google Scholar 

  31. Gangat N, Wolanskyj AP. Anemia of chronic disease. Semin Hematol. 2013;50(3):232–8.

    Article  CAS  PubMed  Google Scholar 

  32. Theurl M, Nairz M, Schroll A, et al. Hepcidin as a predictive factor and therapeutic target in erythropoiesis-stimulating agent treatment for anemia of chronic disease in rats. Haematologica. 2014;99(9):1516–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Capocasale RJ, Makropoulos DA, Achuthanandam R, et al. Myelodysplasia and anemia of chronic disease in human tumor necrosis factor-alpha transgenic mice. Cytometry A. 2008;73(2):148–59.

    Article  PubMed  Google Scholar 

  34. De Lima GA, Mazzali M, Gentil AF, et al. Anemia in chronic renal disease: evaluation of inflammatory activity on erythropoiesis and iron metabolism in patients not submitted to dialysis treatment. Clin Lab. 2012;58(7–8):695–704.

    PubMed  Google Scholar 

  35. Gifford GE, Duckworth DH. Introduction to TNF and related lymphokines. Biotherapy. 1991;3(2):103–11.

    Article  CAS  PubMed  Google Scholar 

  36. McCranor BJ, Kim MJ, Cruz NM, et al. Interleukin-6 directly impairs the erythroid development of human TF-1 erythroleukemic cells. Blood Cells Mol Dis. 2014;52(2–3):126–33.

    Article  CAS  PubMed  Google Scholar 

  37. Galushko EA. The clinical significance of hepcidin detection in the patients with anemia and rheumatoid arthritis. Klin Med (Mosk). 2014;92(6):21–7.

    CAS  Google Scholar 

  38. Nemeth E, Valore EV, Territo M, et al. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003;101(7):2461–3.

    Article  CAS  PubMed  Google Scholar 

  39. Raj DS. Role of interleukin-6 in the anemia of chronic disease. Semin Arthritis Rheum. 2009;38(5):382–8.

    Article  CAS  PubMed  Google Scholar 

  40. Trinder D, Oates PS, Thomas C, et al. Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut. 2000;46(2):270–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morgan EH, Oates PS. Mechanisms and regulation of intestinal iron absorption. Blood Cells Mol Dis. 2002;29(3):384–99.

    Article  CAS  PubMed  Google Scholar 

  42. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goodnough LT, Nemeth E, Ganz T. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood. 2010;116(23):4754–61.

    Article  CAS  PubMed  Google Scholar 

  44. Katsoulidis E, Li Y, Yoon P, et al. Role of the p38 mitogen-activated protein kinase pathway in cytokine-mediated hematopoietic suppression in myelodysplastic syndromes. Cancer Res. 2005;65(19):9029–37.

    Article  CAS  PubMed  Google Scholar 

  45. Lortz S, Schroter S, Stuckemann V, et al. Influence of cytokines on Dmt1 iron transporter and ferritin expression in insulin-secreting cells. J Mol Endocrinol. 2014;52(3):301–10.

    Article  CAS  PubMed  Google Scholar 

  46. Costa E, Fernandes J, Ribeiro S, et al. Aging is associated with impaired renal function, INF-gamma induced inflammation and with alterations in iron regulatory proteins gene expression. Aging Dis. 2014;5(6):356–65.

    PubMed  Google Scholar 

  47. Beaumont C. Multiple regulatory mechanisms act in concert to control ferroportin expression and heme iron recycling by macrophages. Haematologica. 2010;95(8):1233–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Becker C, Orozco M, Solomons NW, Schumann K. Iron metabolism in obesity: how interaction between homoeostatic mechanisms can interfere with their original purpose. Part I: underlying homoeostatic mechanisms of energy storage and iron metabolisms and their interaction. J Trace Elem Med Biol. 2015;30:195–201.

    Article  CAS  PubMed  Google Scholar 

  49. Brasse-Lagnel C, Karim Z, Letteron P, et al. Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology. 2011;140(4):1261–71.e1.

    Article  CAS  PubMed  Google Scholar 

  50. Kheansaard W, Mas-Oo-di S, Nilganuwong S, Tanyong DI. Interferon-gamma induced nitric oxide-mediated apoptosis of anemia of chronic disease in rheumatoid arthritis. Rheumatol Int. 2013;33(1):151–6.

    Article  CAS  PubMed  Google Scholar 

  51. Vokurka M, Krijt J, Vavrova J, Necas E. Hepcidin expression in the liver of mice with implanted tumour reacts to iron deficiency, inflammation and erythropoietin administration. Folia Biol (Praha). 2011;57(6):248–54.

    CAS  Google Scholar 

  52. Nunez MT. Regulatory mechanisms of intestinal iron absorption-uncovering of a fast-response mechanism based on DMT1 and ferroportin endocytosis. Biofactors. 2010;36(2):88–97.

    CAS  PubMed  Google Scholar 

  53. Smith CL, Arvedson TL, Cooke KS, et al. IL-22 regulates iron availability in vivo through the induction of hepcidin. J Immunol. 2013;191(4):1845–55.

    Article  CAS  PubMed  Google Scholar 

  54. Wallace DF, Subramaniam VN. Analysis of IL-22 contribution to hepcidin induction and hypoferremia during the response to LPS in vivo. Int Immunol. 2015;27(6):281–7.

    Article  CAS  PubMed  Google Scholar 

  55. Ganz T, Nemeth E. Iron sequestration and anemia of inflammation. Semin Hematol. 2009;46(4):387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun CC, Vaja V, Babitt JL, Lin HY. Targeting the hepcidin-ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation. Am J Hematol. 2012;87(4):392–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weiss G, Theurl I, Eder S, et al. Serum hepcidin concentration in chronic haemodialysis patients: associations and effects of dialysis, iron and erythropoietin therapy. Eur J Clin Investig. 2009;39(10):883–90.

    Article  CAS  Google Scholar 

  58. Coimbra S, Catarino C, Santos-Silva A. The role of adipocytes in the modulation of iron metabolism in obesity. Obes Rev. 2013;14(10):771–9.

    Article  CAS  PubMed  Google Scholar 

  59. Langdon JM, Yates SC, Femnou LK, et al. Hepcidin-dependent and hepcidin-independent regulation of erythropoiesis in a mouse model of anemia of chronic inflammation. Am J Hematol. 2014;89(5):470–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thawani N, Tam M, Chang KH, Stevenson MM. Interferon-gamma mediates suppression of erythropoiesis but not reduced red cell survival following CpG-ODN administration in vivo. Exp Hematol. 2006;34(11):1451–61.

    Article  CAS  PubMed  Google Scholar 

  61. Canna SW, Wrobel J, Chu N, et al. Interferon-gamma mediates anemia but is dispensable for fulminant toll-like receptor 9-induced macrophage activation syndrome and hemophagocytosis in mice. Arthritis Rheum. 2013;65(7):1764–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Davis D, Charles PJ, Potter A, et al. Anaemia of chronic disease in rheumatoid arthritis: in vivo effects of tumour necrosis factor alpha blockade. Br J Rheumatol. 1997;36(9):950–6.

    Article  CAS  PubMed  Google Scholar 

  63. Schubert TE, Echtenacher B, Hofstadter F, Mannel DN. Failure of interferon-gamma and tumor necrosis factor in mediating anemia of chronic disease in a mouse model of protracted septic peritonitis. Int J Mol Med. 2005;16(4):753–8.

    CAS  PubMed  Google Scholar 

  64. Kumar M, Bhoi S. Cytokines, granulocyte-monocyte colony stimulating factor, interleukin-3 and erythropoietin: can be a therapeutic option for the stimulation of hematopoietic progenitor cells in trauma-hemorrhagic shock? Indian J Crit Care Med. 2016;20(4):207–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vreugdenhil G, Lowenberg B, van Eijk HG, Swaak AJ. Anaemia of chronic disease in rheumatoid arthritis. Raised serum interleukin-6 (IL-6) levels and effects of IL-6 and anti-IL-6 on in vitro erythropoiesis. Rheumatol Int. 1990;10(3):127–30.

    Article  CAS  PubMed  Google Scholar 

  66. Jongen-Lavrencic M, Peeters HR, Wognum A, et al. Elevated levels of inflammatory cytokines in bone marrow of patients with rheumatoid arthritis and anemia of chronic disease. J Rheumatol. 1997;24(8):1504–9.

    CAS  PubMed  Google Scholar 

  67. Wang H, Li W, Goldstein R, et al. HMGB1 as a potential therapeutic target. Novartis Found Symp. 2007;280:73–85; discussion-91, 160–4.

    Google Scholar 

  68. Valdes-Ferrer SI, Papoin J, Dancho ME, et al. HMGB1 mediates anemia of inflammation in murine sepsis survivors. Mol Med. 2015;21(1):951–8.

    Article  CAS  PubMed Central  Google Scholar 

  69. Besson-Fournier C, Latour C, Kautz L, et al. Induction of activin B by inflammatory stimuli up-regulates expression of the iron-regulatory peptide hepcidin through Smad1/5/8 signaling. Blood. 2012;120(2):431–9.

    Article  CAS  PubMed  Google Scholar 

  70. Guidi GC, Lechi SC. Advancements in anemias related to chronic conditions. Clin Chem Lab Med. 2010;48(9):1217–26.

    Article  CAS  PubMed  Google Scholar 

  71. Ludwiczek S, Aigner E, Theurl I, Weiss G. Cytokine-mediated regulation of iron transport in human monocytic cells. Blood. 2003;101(10):4148–54.

    Article  CAS  PubMed  Google Scholar 

  72. Clark IA, Chaudhri G. Tumour necrosis factor may contribute to the anaemia of malaria by causing dyserythropoiesis and erythrophagocytosis. Br J Haematol. 1988;70(1):99–103.

    Article  CAS  PubMed  Google Scholar 

  73. Kitagawa S, Yuo A, Yagisawa M, et al. Activation of human monocyte functions by tumor necrosis factor: rapid priming for enhanced release of superoxide and erythrophagocytosis, but no direct triggering of superoxide release. Exp Hematol. 1996;24(4):559–67.

    CAS  PubMed  Google Scholar 

  74. Lopez-Prieto J, Gonzalez-Reimers E, Aleman-Valls MR, et al. Iron and proinflammatory cytokines in chronic hepatitis C virus infection. Biol Trace Elem Res. 2013;155(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  75. Alfrey CP, Rice L, Udden MM, Driscoll TB. Neocytolysis: physiological down-regulator of red-cell mass. Lancet. 1997;349(9062):1389–90.

    Article  CAS  PubMed  Google Scholar 

  76. Handelman GJ, Levin NW. Red cell survival: relevance and mechanism involved. J Ren Nutr. 2010;20(5 Suppl):S84–8.

    Article  PubMed  Google Scholar 

  77. Libregts SF, Gutierrez L, de Bruin AM, et al. Chronic IFN-gamma production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood. 2011;118(9):2578–88.

    Article  CAS  PubMed  Google Scholar 

  78. Ravasi G, Pelucchi S, Greni F, et al. Circulating factors are involved in hypoxia-induced hepcidin suppression. Blood Cells Mol Dis. 2014;53(4):204–10.

    Article  CAS  PubMed  Google Scholar 

  79. Sonnweber T, Nachbaur D, Schroll A, et al. Hypoxia induced downregulation of hepcidin is mediated by platelet derived growth factor BB. Gut. 2014;63(12):1951–9.

    Article  CAS  PubMed  Google Scholar 

  80. Stenvinkel P. The role of inflammation in the anaemia of end-stage renal disease. Nephrol Dial Transplant. 2001;16(Suppl 7):36–40.

    Article  CAS  PubMed  Google Scholar 

  81. Keithi-Reddy SR, Addabbo F, Patel TV, et al. Association of anemia and erythropoiesis stimulating agents with inflammatory biomarkers in chronic kidney disease. Kidney Int. 2008;74(6):782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. de Lurdes Agostinho Cabrita A, Pinho A, Malho A, et al. Risk factors for high erythropoiesis stimulating agent resistance index in pre-dialysis chronic kidney disease patients, stages 4 and 5. Int Urol Nephrol. 2011;43(3):835–40.

    Article  PubMed  CAS  Google Scholar 

  83. Nazemian F, Karimi G, Moatamedi M, et al. Effect of silymarin administration on TNF-alpha serum concentration in peritoneal dialysis patients. Phytother Res. 2010;24(11):1654–7.

    Article  CAS  PubMed  Google Scholar 

  84. Michels WM, Jaar BG, Ephraim PL, et al. Intravenous iron administration strategies and anemia management in hemodialysis patients. Nephrol Dial Transplant. 2017;32(1):173–81.

    PubMed  Google Scholar 

  85. Malyszko J, Koc-Zorawska E, Levin-Iaina N, et al. Iron metabolism in hemodialyzed patients—a story half told? Arch Med Sci. 2014;10(6):1117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eckardt KU, Boutellier U, Kurtz A, et al. Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol (1985). 1989;66(4):1785–8.

    CAS  Google Scholar 

  87. Carrero JJ, Stenvinkel P. Inflammation in end-stage renal disease—what have we learned in 10 years? Semin Dial. 2010;23(5):498–509.

    Article  PubMed  Google Scholar 

  88. US Renal Data System (USRDS). Annual data report, atlas of end-stage renal disease in the United States. Chapter 1: Chronic kidney disease in the adult NHANES population. National Institutes of Health, National Institute of Diabetes & Digestive & Kidney Diseases, Division of Kidney, Urologic, & Hematologic Diseases; Bethesda, MD, 2009.

    Google Scholar 

  89. Besarab A, Bolton WK, Browne JK, et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med. 1998;339(9):584–90.

    Article  CAS  PubMed  Google Scholar 

  90. World Health Organization. Nutritional Anaemias: Report of a WHO Scientific Group. Geneva, Switzerland, 1968. http://apps.who.int/iris/bitstream/10665/40707/1/WHO_TRS_405.pdf. Accessed 11 Dec 2016.

  91. Collins AJ, Foley RN, Herzog C, et al. US Renal Data System 2010 Annual Data Report. Am J Kidney Dis. 2011;57(1 Suppl 1):A8. e1-526.

    Article  PubMed  Google Scholar 

  92. National Kidney Foundation - Kidney Disease Outcomes Quality Initiative. Clinical practice guidelines for anemia of chronic kidney disease: update 2000. Am J Kidney Dis. 2001;37(1 Suppl 1):S182–238.

    Google Scholar 

  93. FDA MedWatch. Erythropoiesis-stimulating agents (ESAs) in chronic kidney disease: drug safety communication—modified dosing recommendations, posted 24 Jun 2011. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm260641.htm. Accessed 2 Feb 2017.

  94. National Institute for Health and Care Excellence (NICE) Guideline. Chronic kidney disease: managing anaemia, published 3 Jun 2015. https://www.nice.org.uk/guidance/ng8/resources/chronic-kidney-disease-managing-anaemia-51046844101. Accessed 11 Dec 2016.

  95. Vaziri ND, Goshtasbi N, Yuan J, et al. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am J Nephrol. 2012;36(5):438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Andersen K, Kesper MS, Marschner JA, et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J Am Soc Nephrol. 2017;28(1):76–83.

    Article  PubMed  Google Scholar 

  97. Cigarran Guldris S, Gonzalez Parra E, Cases Amenos A. Gut microbiota in chronic kidney disease. Nefrología. 2017;37(1):9–19. doi:10.1016/j.nefro.2016.05.008.

    Google Scholar 

  98. Wang M, Xin H, Tang W, et al. AMPK serves as a therapeutic target against anemia of inflammation. Antioxid Redox Signal. 2017;27(5):251–68. doi:10.1089/ars.2016.6846.

    Google Scholar 

  99. Verzola D, Bonanni A, Sofia A, et al. Toll-like receptor 4 signalling mediates inflammation in skeletal muscle of patients with chronic kidney disease. J Cachexia Sarcopenia Muscle. 2017;8(1):131–44. doi:10.1002/jcsm.12129.

    Google Scholar 

  100. Suzuki M, Satoh N, Nakamura M, et al. Bacteremia in hemodialysis patients. World J Nephrol. 2016;5(6):489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ishigami J, Grams ME, Chang AR, et al. CKD and risk for hospitalization with infection: the atherosclerosis risk in communities (ARIC) study. Am J Kidney Dis. 2017;69(6):752–61. doi:10.1053/j.ajkd.2016.09.018.

    Google Scholar 

  102. Goetz DH, Holmes MA, Borregaard N, et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002;10(5):1033–43.

    Article  CAS  PubMed  Google Scholar 

  103. Kalantar-Zadeh K, Kalantar-Zadeh K, Lee GH. The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease? Clin J Am Soc Nephrol. 2006;1(Suppl 1):S9–18.

    Article  CAS  PubMed  Google Scholar 

  104. Sitter T, Bergner A, Schiffl H. Dialysate related cytokine induction and response to recombinant human erythropoietin in haemodialysis patients. Nephrol Dial Transplant. 2000;15(8):1207–11.

    Article  CAS  PubMed  Google Scholar 

  105. Collins AJ, Kasiske B, Herzog C, et al. Excerpts from the United States renal data system 2006 annual data report. Am J Kidney Dis. 2007;49(1 Suppl 1):A6–7. s1-296.

    Article  PubMed  Google Scholar 

  106. Tilleul PR, Lafuna A, Emery C, Zakin L, Braunhofer P, Mahi L, Deray G, Wernli J. Cost analysis of anemia management in hemodialysis patients in 2009: a French multicenter retrospective study. ISPOR 17th Annual International Meeting 2012. Abstract No PUK14; Value Health 2012;15:A154.

    Google Scholar 

  107. Kadiroglu AK, Kadiroglu ET, Sit D, et al. Periodontitis is an important and occult source of inflammation in hemodialysis patients. Blood Purif. 2006;24(4):400–4.

    Article  PubMed  Google Scholar 

  108. Gaweda AE, Goldsmith LJ, Brier ME, Aronoff GR. Iron, inflammation, dialysis adequacy, nutritional status, and hyperparathyroidism modify erythropoietic response. Clin J Am Soc Nephrol. 2010;5(4):576–81.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Panagoutsos SA, Yannatos EV, Passadakis PS, et al. Effects of hemodialysis dose on anemia, hypertension, and nutrition. Ren Fail. 2002;24(5):615–21.

    Article  PubMed  Google Scholar 

  110. Kalantar-Zadeh K, Ikizler TA, Block G, et al. Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. Am J Kidney Dis. 2003;42(5):864–81.

    Article  PubMed  Google Scholar 

  111. van der Putten K, Braam B, Jie KE, Gaillard CA. Mechanisms of disease: erythropoietin resistance in patients with both heart and kidney failure. Nat Clin Pract Nephrol. 2008;4(1):47–57.

    Article  PubMed  CAS  Google Scholar 

  112. Minutolo R, Locatelli F, Gallieni M, et al. Anaemia management in non-dialysis chronic kidney disease (CKD) patients: a multicentre prospective study in renal clinics. Nephrol Dial Transplant. 2013;28(12):3035–45.

    Article  CAS  PubMed  Google Scholar 

  113. Solomon SD, Uno H, Lewis EF, et al. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N Engl J Med. 2010;363(12):1146–55.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang S, Chen Y, Guo W, et al. Disordered hepcidin-ferroportin signaling promotes breast cancer growth. Cell Signal. 2014;26(11):2539–50.

    Article  CAS  PubMed  Google Scholar 

  115. Xu X, Jiang M, Zhang Y, et al. Celecoxib attenuates cachectic events in mice by modulating the expression of vascular endothelial growth factor. Mol Med Rep. 2015;11(1):289–94.

    Article  CAS  PubMed  Google Scholar 

  116. Mei S, Wang H, Fu R, et al. Hepcidin and GDF15 in anemia of multiple myeloma. Int J Hematol. 2014;100(3):266–73.

    Article  CAS  PubMed  Google Scholar 

  117. Lakhal S, Talbot NP, Crosby A, et al. Regulation of growth differentiation factor 15 expression by intracellular iron. Blood. 2009;113(7):1555–63.

    Article  CAS  PubMed  Google Scholar 

  118. Jiang F, Yu WJ, Wang XH, et al. Regulation of hepcidin through GDF-15 in cancer-related anemia. Clin Chim Acta. 2014;428:14–9.

    Article  CAS  PubMed  Google Scholar 

  119. Unal B, Alan S, Bassorgun CI, et al. The divergent roles of growth differentiation factor-15 (GDF-15) in benign and malignant skin pathologies. Arch Dermatol Res. 2015;307(7):551–7.

    Article  CAS  PubMed  Google Scholar 

  120. Rong R, Xijun X. Erythropoietin pretreatment suppresses inflammation by activating the PI3K/Akt signaling pathway in myocardial ischemia-reperfusion injury. Exp Ther Med. 2015;10(2):413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pierce CN, Larson DF. Inflammatory cytokine inhibition of erythropoiesis in patients implanted with a mechanical circulatory assist device. Perfusion. 2005;20(2):83–90.

    Article  PubMed  Google Scholar 

  122. Tsantes A, Tassiopoulos S, Papadhimitriou SI, et al. Suboptimal erythropoietic response to hypoxemia in idiopathic pulmonary fibrosis. Chest. 2003;124(2):548–53.

    Article  PubMed  Google Scholar 

  123. Cazzola M, Ponchio L, de Benedetti F, et al. Defective iron supply for erythropoiesis and adequate endogenous erythropoietin production in the anemia associated with systemic-onset juvenile chronic arthritis. Blood. 1996;87(11):4824–30.

    CAS  PubMed  Google Scholar 

  124. Ott C, Liebold A, Takses A, et al. High prevalence but insufficient treatment of iron-deficiency anemia in patients with inflammatory bowel disease: results of a population-based cohort. Gastroenterol Res Pract. 2012;2012:595970.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mucke V, Mucke MM, Raine T, Bettenworth D. Diagnosis and treatment of anemia in patients with inflammatory bowel disease. Ann Gastroenterol. 2017;30(1):15–22.

    PubMed  Google Scholar 

  126. Ershler WB. Biological interactions of aging and anemia: a focus on cytokines. J Am Geriatr Soc. 2003;51(3 Suppl):S18–21.

    Article  PubMed  Google Scholar 

  127. Brugnara C. Reticulocyte cellular indices: a new approach in the diagnosis of anemias and monitoring of erythropoietic function. Crit Rev Clin Lab Sci. 2000;37(2):93–130.

    Article  CAS  PubMed  Google Scholar 

  128. Spivak JL. Iron and the anemia of chronic disease: vindication for the non-essential role of iron supplementation. Oncology (Williston Park). 2011;25(5):421–3.

    Google Scholar 

  129. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340(6):448–54.

    Article  CAS  PubMed  Google Scholar 

  130. Skikne BS, Punnonen K, Caldron PH, et al. Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: a prospective multicenter evaluation of soluble transferrin receptor and the sTfR/log ferritin index. Am J Hematol. 2011;86(11):923–7.

    Article  CAS  PubMed  Google Scholar 

  131. Camacho J, Arnalich F, Zamorano AF, Vazquez JJ. Serum erythropoietin levels in the anaemia of chronic disorders. J Intern Med. 1991;229(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  132. Oustamanolakis P, Koutroubakis IE, Messaritakis I, et al. Soluble transferrin receptor-ferritin index in the evaluation of anemia in inflammatory bowel disease: a case-control study. Ann Gastroenterol. 2011;24(2):108–14.

    PubMed  PubMed Central  Google Scholar 

  133. Poveda Gomez F, Camacho Siles J, Quevedo Morales E, et al. Pattern of blood levels of erythropoietin and proinflammatory cytokines in patients with anemia of chronic disorders secondary to infection. An Med Interna. 2001;18(6):298–304.

    CAS  PubMed  Google Scholar 

  134. Boyd HK, Lappin TR, Bell AL. Evidence for impaired erythropoietin response to anaemia in rheumatoid disease. Br J Rheumatol. 1991;30(4):255–9.

    Article  CAS  PubMed  Google Scholar 

  135. Voulgarelis M, Kokori SI, Ioannidis JP, et al. Anaemia in systemic lupus erythematosus: aetiological profile and the role of erythropoietin. Ann Rheum Dis. 2000;59(3):217–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dignass AU, Gasche C, Bettenworth D, et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J Crohns Colitis. 2015;9(3):211–22.

    Article  PubMed  Google Scholar 

  137. Sanz OJ. Predictors of response to erythropoiesis-stimulating agents (ESA) in cancer patients: the role of baseline serum epoetin level. Clin Transl Oncol. 2008;10(8):486–92.

    Article  CAS  Google Scholar 

  138. Tonia T, Mettler A, Robert N, et al. Erythropoietin or darbepoetin for patients with cancer. Cochrane Database Syst Rev. 2012;12:Cd003407.

    Google Scholar 

  139. Bermejo F, Algaba A, Guerra I, et al. Should we monitor vitamin B12 and folate levels in Crohn’s disease patients? Scand J Gastroenterol. 2013;48(11):1272–7.

    Article  CAS  PubMed  Google Scholar 

  140. Ward MG, Kariyawasam VC, Mogan SB, et al. Prevalence and risk factors for functional vitamin B12 deficiency in patients with Crohn’s disease. Inflamm Bowel Dis. 2015;21(12):2839–47.

    Article  PubMed  Google Scholar 

  141. Yakut M, Ustun Y, Kabacam G, Soykan I. Serum vitamin B12 and folate status in patients with inflammatory bowel diseases. Eur J Intern Med. 2010;21(4):320–3.

    Article  CAS  PubMed  Google Scholar 

  142. Gisbert JP, Gomollon F. Thiopurine-induced myelotoxicity in patients with inflammatory bowel disease: a review. Am J Gastroenterol. 2008;103(7):1783–800.

    Article  PubMed  Google Scholar 

  143. Singh AK, Szczech L, Tang KL, et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355(20):2085–98.

    Article  CAS  PubMed  Google Scholar 

  144. Astor BC, Coresh J, Heiss G, et al. Kidney function and anemia as risk factors for coronary heart disease and mortality: the atherosclerosis risk in communities (ARIC) study. Am Heart J. 2006;151(2):492–500.

    Article  PubMed  Google Scholar 

  145. Locatelli F, Pisoni RL, Combe C, et al. Anaemia in haemodialysis patients of five European countries: association with morbidity and mortality in the dialysis outcomes and practice patterns study (DOPPS). Nephrol Dial Transplant. 2004;19(1):121–32.

    Article  PubMed  Google Scholar 

  146. Collins AJ, Ma JZ, Ebben J. Impact of hematocrit on morbidity and mortality. Semin Nephrol. 2000;20(4):345–9.

    CAS  PubMed  Google Scholar 

  147. Horwich TB, Fonarow GC, Hamilton MA, et al. Anemia is associated with worse symptoms, greater impairment in functional capacity and a significant increase in mortality in patients with advanced heart failure. J Am Coll Cardiol. 2002;39(11):1780–6.

    Article  PubMed  Google Scholar 

  148. Canadian Erythropoietin Study Group. Association between recombinant human erythropoietin and quality of life and exercise capacity of patients receiving haemodialysis. BMJ. 1990;300(6724):573–8.

    Article  Google Scholar 

  149. Parfrey PS, Lauve M, Latremouille-Viau D, Lefebvre P. Erythropoietin therapy and left ventricular mass index in CKD and ESRD patients: a meta-analysis. Clin J Am Soc Nephrol. 2009;4(4):755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Guan P, Li L, Zhang MQ, et al. Iron supplementation effectively suppresses gastrocnemius muscle lesions to improve exercise capacity in chronic heart failure rats with anemia. Nutrition. 2015;31(7–8):1038–44.

    Article  CAS  PubMed  Google Scholar 

  151. Soffer O, Fellner SK, Rush RL. Creatine phosphokinase in long-term dialysis patients. Arch Intern Med. 1981;141(2):181–8.

    Article  CAS  PubMed  Google Scholar 

  152. Novak JE, Szczech LA. Triumph and tragedy: anemia management in chronic kidney disease. Curr Opin Nephrol Hypertens. 2008;17(6):580–8.

    Article  CAS  PubMed  Google Scholar 

  153. Przybyszewska J, Zekanowska E, Kedziora-Kornatowska K, et al. Serum prohepcidin and other iron metabolism parameters in elderly patients with anemia of chronic disease and with iron deficiency anemia. Pol Arch Med Wewn. 2013;123(3):105–11.

    CAS  PubMed  Google Scholar 

  154. Shu T, Jing C, Lv Z, et al. Hepcidin in tumor-related iron deficiency anemia and tumor-related anemia of chronic disease: pathogenic mechanisms and diagnosis. Eur J Haematol. 2015;94(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  155. Kennedy RB, Ovsyannikova IG, Haralambieva IH, et al. Genome-wide SNP associations with rubella-specific cytokine responses in measles-mumps-rubella vaccine recipients. Immunogenetics. 2014;66(7–8):493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nairz M, Haschka D, Demetz E, Weiss G. Iron at the interface of immunity and infection. Front Pharmacol. 2014;5:152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Blumenstein I, Dignass A, Vollmer S, et al. Current practice in the diagnosis and management of IBD-associated anaemia and iron deficiency in Germany: the German AnaemIBD study. J Crohns Colitis. 2014;8(10):1308–14.

    Article  PubMed  Google Scholar 

  158. Derovs A, Pokrotnieks J, Derova J, et al. Current opinion on the management of iron deficiency anaemia in gastrointestinal diseases. Eksp Klin Gastroenterol. 2014;10:97–105.

    Google Scholar 

  159. Gurusamy KS, Nagendran M, Broadhurst JF, et al. Iron therapy in anaemic adults without chronic kidney disease. Cochrane Database Syst Rev. 2014;(12):Cd010640.

    Google Scholar 

  160. Albaramki J, Hodson EM, Craig JC, Webster AC. Parenteral versus oral iron therapy for adults and children with chronic kidney disease. Cochrane Database Syst Rev. 2012;1:Cd007857.

    Google Scholar 

  161. Herfs R, Fleitmann L, Kocsis I. Treatment of iron deficiency with or without anaemia with intravenous ferric Carboxymaltose in gynaecological practices—a non-interventional study. Geburtshilfe Frauenheilkd. 2014;74(1):81–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Stein J, Connor S, Virgin G, et al. Anemia and iron deficiency in gastrointestinal and liver conditions. World J Gastroenterol. 2016;22(35):7908–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bailie GR, Clark JA, Lane CE, Lane PL. Hypersensitivity reactions and deaths associated with intravenous iron preparations. Nephrol Dial Transplant. 2005;20(7):1443–9.

    Article  CAS  PubMed  Google Scholar 

  164. Yee J, Besarab A. Iron sucrose: the oldest iron therapy becomes new. Am J Kidney Dis. 2002;40(6):1111–21.

    Article  CAS  PubMed  Google Scholar 

  165. Bergamaschi G, Di Sabatino A, Albertini R, et al. Prevalence and pathogenesis of anemia in inflammatory bowel disease. Influence of anti-tumor necrosis factor-alpha treatment. Haematologica. 2010;95(2):199–205.

    Article  CAS  PubMed  Google Scholar 

  166. Kim SM, Lee CH, Oh YK, et al. The effects of oral iron supplementation on the progression of anemia and renal dysfunction in patients with chronic kidney disease. Clin Nephrol. 2011;75(5):472–9.

    Article  CAS  PubMed  Google Scholar 

  167. Obrador GT, Macdougall IC. Effect of red cell transfusions on future kidney transplantation. Clin J Am Soc Nephrol. 2013;8(5):852–60.

    Article  PubMed  Google Scholar 

  168. Garratty G. Immune hemolytic anemia associated with negative routine serology. Semin Hematol. 2005;42(3):156–64.

    Article  CAS  PubMed  Google Scholar 

  169. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010;147(1):35–51.

    Article  CAS  PubMed  Google Scholar 

  170. Han X, Zhou DB, Xu CM, et al. Effect of erythropoietin on proinflammatory factors of human monocytes and its mechanisms. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2011;19(3):738–43.

    CAS  PubMed  Google Scholar 

  171. Icardi A, Paoletti E, De Nicola L, et al. Renal anaemia and EPO hyporesponsiveness associated with vitamin D deficiency: the potential role of inflammation. Nephrol Dial Transplant. 2013;28(7):1672–9.

    Article  CAS  PubMed  Google Scholar 

  172. Zughaier SM, Alvarez JA, Sloan JH, et al. The role of vitamin D in regulating the iron-hepcidin-ferroportin axis in monocytes. J Clin Transl Endocrinol. 2014;1(1):19–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Bel'mer SV, Mitina EV, Karpina LM, Smetanina NS. Iron deficiency anemia and anemia in chronic celiac disease in children. Eksp Klin Gastroenterol. 2014;1:23–9.

    Google Scholar 

  174. Kautz L, Jung G, Du X, et al. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of beta-thalassemia. Blood. 2015;126(17):2031–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Panichi V, Rosati A, Paoletti S, et al. A vitamin E-coated polysulfone membrane reduces serum levels of inflammatory markers and resistance to erythropoietin-stimulating agents in hemodialysis patients: results of a randomized cross-over multicenter trial. Blood Purif. 2011;32(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  176. Roberts TL, Obrador GT, St Peter WL, et al. Relationship among catheter insertions, vascular access infections, and anemia management in hemodialysis patients. Kidney Int. 2004;66(6):2429–36.

    Article  PubMed  Google Scholar 

  177. Johnson DW, Pollock CA, Macdougall IC. Erythropoiesis-stimulating agent hyporesponsiveness. Nephrology (Carlton). 2007;12(4):321–30.

    Article  CAS  Google Scholar 

  178. Movilli E, Pertica N, Camerini C, et al. Predialysis versus postdialysis hematocrit evaluation during erythropoietin therapy. Am J Kidney Dis. 2002;39(4):850–3.

    Article  CAS  PubMed  Google Scholar 

  179. Macdougall IC. Iron supplementation in nephrology and oncology: what do we have in common? Oncologist. 2011;16(Suppl 3):25–34.

    Article  PubMed  Google Scholar 

  180. Sundrarjun T, Komindr S, Archararit N, et al. Effects of n-3 fatty acids on serum interleukin-6, tumour necrosis factor-alpha and soluble tumour necrosis factor receptor p55 in active rheumatoid arthritis. J Int Med Res. 2004;32(5):443–54.

    Article  CAS  PubMed  Google Scholar 

  181. Ellulu MS, Khaza'ai H, Abed Y, et al. Role of fish oil in human health and possible mechanism to reduce the inflammation. Inflammopharmacology. 2015;23(2–3):79–89.

    Article  CAS  PubMed  Google Scholar 

  182. Blanchette NL, Manz DH, Torti FM, Torti SV. Modulation of hepcidin to treat iron deregulation: potential clinical applications. Expert Rev Hematol. 2016;9(2):169–86.

    Article  CAS  PubMed  Google Scholar 

  183. Schwoebel F, van Eijk LT, Zboralski D, et al. The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys. Blood. 2013;121(12):2311–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Poli M, Asperti M, Ruzzenenti P, et al. Hepcidin antagonists for potential treatments of disorders with hepcidin excess. Front Pharmacol. 2014;5: Article 86.

    Google Scholar 

  185. van Eijk LT, John AS, Schwoebel F, et al. Effect of the antihepcidin Spiegelmer lexaptepid on inflammation-induced decrease in serum iron in humans. Blood. 2014;124(17):2643–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Angmo S, Tripathi N, Abbat S, et al. Identification of guanosine 5′-diphosphate as potential iron mobilizer: preventing the Hepcidin-Ferroportin interaction and modulating the interleukin-6/Stat-3 pathway. Sci Rep. 2017;7:40097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Locatelli F, Fishbane S, Block GA, Macdougall IC. Targeting hypoxia-inducible factors for the treatment of anemia in chronic kidney disease patients. Am J Nephrol. 2017;45(3):187–99.

    Article  CAS  PubMed  Google Scholar 

  188. Akizawa T, Tsubakihara Y, Nangaku M, et al. Effects of Daprodustat, a novel hypoxia-inducible factor prolyl hydroxylase inhibitor on anemia management in Japanese hemodialysis subjects. Am J Nephrol. 2017;45(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  189. Besarab A, Chernyavskaya E, Motylev I, et al. Roxadustat (FG-4592): correction of anemia in incident dialysis patients. J Am Soc Nephrol. 2016;27(4):1225–33.

    Article  CAS  PubMed  Google Scholar 

  190. Besarab A, Provenzano R, Hertel J, et al. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol Dial Transplant. 2015;30(10):1665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Flamme I, Oehme F, Ellinghaus P, et al. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (Molidustat) stimulates erythropoietin production without hypertensive effects. PLoS One. 2014;9(11):e111838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Holdstock L, Meadowcroft AM, Maier R, et al. Four-week studies of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 for treatment of anemia. J Am Soc Nephrol. 2016;27(4):1234–44.

    Article  CAS  PubMed  Google Scholar 

  193. Pergola PE, Spinowitz BS, Hartman CS, et al. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int. 2016;90(5):1115–22.

    Article  CAS  PubMed  Google Scholar 

  194. Provenzano R, Besarab A, Sun CH, et al. Oral hypoxia-inducible factor prolyl hydroxylase inhibitor Roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin J Am Soc Nephrol. 2016;11(6):982–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Provenzano R, Besarab A, Wright S, et al. Roxadustat (FG-4592) versus Epoetin alfa for anemia in patients receiving maintenance hemodialysis: a phase 2, randomized, 6- to 19-week, open-label, active-comparator, dose-ranging, safety and exploratory efficacy study. Am J Kidney Dis. 2016;67(6):912–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatole Besarab B.S.Ch.E., M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Besarab, A., Hemmerich, S. (2018). Anemia of Chronic Disease. In: Provenzano, R., Lerma, E., Szczech, L. (eds) Management of Anemia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7360-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7360-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7358-3

  • Online ISBN: 978-1-4939-7360-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics