Skip to main content

Analysis of Individual Extracellular Vesicles by Flow Cytometry

  • Protocol
  • First Online:
Flow Cytometry Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1678))

Abstract

Extracellular vesicles (EVs) are released by cells and can be found in cell culture supernatants and biofluids. EVs carry proteins, nucleic acids, and other cellular components and can deliver these to nearby or distant cells, making EVs of interest as both disease biomarkers and therapeutic targets. EVs in biofluids are heterogeneous, coming from different cell types and from different sources with the cell, which limits the usefulness of bulk EV analysis methods that report the average features of all EVs present. Single-particle measurements such as flow cytometry would be preferred, but the small size and low abundance of surface antigens challenges conventional flow cytometry approaches, leading to the development of vesicle-specific assays and experimental design. Among the key issues that have emerged are: (a) judicious choice of detection (triggering) approach; (b) appropriate control experiments to confirm the vesicular nature of the detected events and the contribution of coincidence (aka swarm detection); and (c) the importance of fluorescence calibration to allow data to be compared over time and between laboratories. We illustrate these issues in the context of fluorescence-triggered Vesicle Flow Cytometry (VFC), a general approach to the quantitative measurement of EV number, size, and surface marker expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of Exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30(1)

    Google Scholar 

  2. Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797. doi:10.1093/biosci/biv084

    Article  Google Scholar 

  3. Nolan JP (2015) Flow Cytometry of extracellular vesicles: potential, pitfalls, and prospects. Curr Protoc Cytom 73:13.14.11–13.14.16. doi:10.1002/0471142956.cy1314s73

    Google Scholar 

  4. van der Pol E, Coumans FAW, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, Sturk A, van Leeuwen TG, Nieuwland R (2014) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 12(7):1182–1192. doi:10.1111/jth.12602

    Article  Google Scholar 

  5. Lacroix R, Judicone C, Mooberry M, Boucekine M, Key NS, Dignat-George F, the ISSCW (2013) Standardization of pre-analytical variables in plasma microparticle determination: results of the international society on thrombosis and Haemostasis SSC collaborative workshop. J Thromb Haemost 11(6):1190–1193. doi:10.1111/jth.12207

    Article  Google Scholar 

  6. Lacroix R, Judicone C, Poncelet P, Robert S, Arnaud L, Sampol J, Dignat-george F (2012) Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost 10(3):437–446

    Article  CAS  Google Scholar 

  7. Lacroix R, Robert S, Poncelet P, Kasthuri R, Key N, Dignat-George F (2010) Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the international society on thrombosis and Haemostasis SSC collaborative workshop. J Thromb Haemost 8(11):2571–2574

    Article  CAS  Google Scholar 

  8. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Théry C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3(1.) 3:10.3402/jev.v3403.26913). doi:10.3402/jev.v3.26913

  9. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-‘t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles, 2. 10.3402/jev.v3402i3400.20360. doi:10.3402/jev.v2i0.20360

  10. Böing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 3:23430

    Article  Google Scholar 

  11. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols Cell Biol Unit 3.22. 21-23.22. 29

    Google Scholar 

  12. Linares R, Tan S, Gounou C, Arraud N, Brisson AR (2015) High-speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles 4:29509

    Article  Google Scholar 

  13. Chandler W, Yeung W, Tait J (2011) A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. J Thromb Haemost 9(6):1216–1224

    Article  CAS  Google Scholar 

  14. van der Pol E, Coumans FAW, Sturk A, Nieuwland R, van Leeuwen TG (2014) Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett 14(11):6195–6201. doi:10.1021/nl503371p

    Article  Google Scholar 

  15. Robert S, Poncelet P, Lacroix R, Arnaud L, Giraudo L, Hauchard A, Sampol J, Dignat-george F (2009) Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies? J Thromb Haemost 7(1):190–197

    Article  CAS  Google Scholar 

  16. Cointe S, Judicone C, Robert S, Mooberry M, Poncelet P, Wauben M, Nieuwland R, Key N, Dignat-George F, Lacroix R (2016) Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop. J Thromb Haemost 15(1):187–193

    Article  Google Scholar 

  17. Arraud N, Gounou C, Turpin D, Brisson AR (2016) Fluorescence triggering: a general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytometry A 89(2):184–195. doi:10.1002/cyto.a.22669

    Article  CAS  Google Scholar 

  18. Kormelink TG, Arkesteijn GJA, Nauwelaers FA, van den Engh G, Nolte-'t Hoen ENM, Wauben MHM (2016) Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry. Cytometry A 89(2):135–147. doi:10.1002/cyto.a.22644

    Article  CAS  Google Scholar 

  19. Stoner SA, Duggan E, Condello D, Guerrero A, Turk JR, Narayanan PK, Nolan JP (2016) High sensitivity flow cytometry of membrane vesicles. Cytometry A 89(2):196–206. doi:10.1002/cyto.a.22787

    Article  CAS  Google Scholar 

  20. van der Vlist EJ, Nolte EN, Stoorvogel W, Arkesteijn GJ, Wauben MH (2012) Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc 7(7):1311–1326

    Article  Google Scholar 

  21. Akers JC, Ramakrishnan V, Nolan JP, Duggan E, Fu C-C, Hochberg FH, Chen CC, Carter BS (2016) Comparative analysis of technologies for quantifying extracellular vesicles (EVs) in clinical cerebrospinal fluids (CSF). PLoS One 11(2):e0149866

    Article  Google Scholar 

  22. Brooks MB, Turk JR, Guerrero A, Narayanan PK, Nolan JP, Besteman EG, Wilson DW, Thomas RA, Fishman CE, Thompson KL, Eliinger-Ziegelbauer H, Pierson JB, Paulman A, Chiang AY, Schultze AE (2016) Non-lethal endotoxin injection: a rat model for new biomarkers of hypercoagulability. PLoS One 12(1):e0169976

    Article  Google Scholar 

  23. Van Der Pol E, Hoekstra A, Sturk A, Otto C, Van Leeuwen T, Nieuwland R (2010) Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 8(12):2596–2607

    Article  Google Scholar 

  24. Wang L, Gaigalas AK, Abbasi F, Marti GE, Vogt RF, Schwartz A (2002) Quantitating fluorescence intensity from fluorophores: practical use of MESF values. J Res-Natl Inst Stand Technol 107(4):339–354

    Article  CAS  Google Scholar 

  25. Hoffman RA, Wang L, Bigos M, Nolan JP (2012) NIST/ISAC standardization study: variability in assignment of intensity values to fluorescence standard beads and in cross calibration of standard beads to hard dyed beads. Cytometry A 81(9):785–796

    Article  Google Scholar 

  26. Wang L, Gaigalas AK, Marti G, Abbasi F, Hoffman RA (2008) Toward quantitative fluorescence measurements with multicolor flow cytometry. Cytometry A 73(4):279–288

    Article  Google Scholar 

  27. Nolan JP, Chambers JD, Sklar LA (1998) Cytometric approaches to the study of receptors. Phagocyte function: a guide for research and clinical evaluation. Wiley-Liss, New York, pp 19–45

    Google Scholar 

  28. Woods TA, Graves SW, Nolan JP (2005) Microsphere Surface Protein Determination Using Flow Cytometry. Current Protocols in Cytometry: Unit13.12. 11-13.12. 13

    Google Scholar 

  29. Coumans FAW, van der Pol E, Böing AN, Hajji N, Sturk G, van Leeuwen TG, Nieuwland R (2014) Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Vesicles 3:25922

    Article  Google Scholar 

  30. Valkonen S, van der Pol E, Böing A, Yuana Y, Yliperttula M, Nieuwland R, Laitinen S, Siljander P (2017) Biological reference materials for extracellular vesicle studies. Eur J Pharm Sci 98:4–16

    Article  CAS  Google Scholar 

  31. Lee JA, Spidlen J, Boyce K, Cai J, Crosbie N, Dalphin M, Furlong J, Gasparetto M, Goldberg M, Goralczyk EM (2008) MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73(10):926–930

    Article  Google Scholar 

  32. Van Deun J, Mestdagh P, Agostinis P, Akay Ö, Anand S, Anckaert J, Martinez ZA, Baetens T, Beghein E, Bertier L (2017) EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods 14(3):228–232

    Article  Google Scholar 

Download references

Acknowledgments

Supported by: UH2TR000931 from the NIH Common Fund, through the Office of Strategic Coordination/Office of the NIH Director.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Nolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Nolan, J.P., Duggan, E. (2018). Analysis of Individual Extracellular Vesicles by Flow Cytometry. In: Hawley, T., Hawley, R. (eds) Flow Cytometry Protocols. Methods in Molecular Biology, vol 1678. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7346-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7346-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7344-6

  • Online ISBN: 978-1-4939-7346-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics