Skip to main content

Analyzing Genome Termini of Bacteriophage Through High-Throughput Sequencing

  • Protocol
  • First Online:
Bacteriophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1681))

Abstract

High-throughput sequencing (HTS) is an effective tool for bacteriophage genome and its termini analysis. HTS technology parallelizes the sequencing process, producing thousands to millions of reads concurrently. Terminal information of a bacteriophage genome is important and basic knowledge for understanding the biology of the bacteriophage. We have created a high-occurrence reads as termini theory and developed practical methods to determine the bacteriophage genome termini, which is based on the large data of HTS. With this method, the termini of the bacteriophage genome can be efficiently and reliably identified as a by-product of bacteriophage genome sequencing, by solely analyzing the sequence statistics of the raw sequencing data (reads), without any further lab experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36(1):39–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McKenna M (2014) Drugs: gut response. Nature 508(7495):182–183

    Article  CAS  Google Scholar 

  3. Li S, Fan H, An X, Fan H, Jiang H, Chen Y, Tong Y (2014) Scrutinizing virus genome termini by high-throughput sequencing. PLoS One 9(1):e85806

    Article  PubMed  PubMed Central  Google Scholar 

  4. Adams MH (1959) Bacteriophages. Bacteriophages

    Google Scholar 

  5. Carlson K (2005) Appendix: working with bacteriophages: common techniques and methodological approaches. Bacteriophages:437–494

    Google Scholar 

  6. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  7. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30(5):434–439

    Article  CAS  PubMed  Google Scholar 

  8. Pennisi E (2010) Semiconductors inspire new sequencing technologies. Science 327(5970):1190–1190

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38(3):95–109

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu S, Le S, Tan Y, Zhu J, Li M, Rao X, Zou L, Li S, Wang J, Jin X (2013) Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages. PLoS One 8(5):e62933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714

    Article  CAS  PubMed  Google Scholar 

  15. Gordon A (2011) FASTX-Toolkit. Hannon Lab. http://hannonlab.cshl.edu/fastx_toolkit/index.html. Accessed 26 Nov 2014

  16. NCBI (2014.) Nucleotide Blast http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome. Accessed 26 Nov 2014

  17. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):0955–0964

    Article  CAS  Google Scholar 

  19. Jiang X, Jiang H, Li C, Wang S, Mi Z, An X, Chen J, Tong Y (2011) Sequence characteristics of T4-like bacteriophage IME08 benome termini revealed by high throughput sequencing. Virol J 8:194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sheng W, Huanhuan J, Jiankui C, Dabin L, Cun L, Bo P, Xiaoping A, Xin Z, Yusen Z, Yigang T (2010) Isolation and rapid genetic characterization of a novel T4-like bacteriophage. J Med Coll PLA 25(6):331–340

    Article  Google Scholar 

  21. Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang X, Wang Y, Li S et al. (2015) A novel termini analysis theory using HTS data alone for the identification of Enterococcus phage EF4-like genome termini. BMC Genomics 16(414): DOI 10.1186/s12864-015-1612-3

    Google Scholar 

  23. Wang Y, Wang W, Lv Y, Zheng W, Mi Z, Pei G, An X, Xu X, Han C, Liu J (2014) Characterization and complete genome sequence analysis of novel bacteriophage IME-EFm1 infecting enterococcus faecium. J Gen Virol 95(Pt 11):2565–2575

    Article  PubMed  Google Scholar 

  24. Zhang X, Kang H, Li Y et al. (2015) Conserved termini and adjacent variable region of Twortlikevirus Staphylococcus phages. Virologica Sinica 30(6):433–440 

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianglilan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, X., Wang, Y., Tong, Y. (2018). Analyzing Genome Termini of Bacteriophage Through High-Throughput Sequencing. In: Clokie, M., Kropinski, A., Lavigne, R. (eds) Bacteriophages. Methods in Molecular Biology, vol 1681. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7343-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7343-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7341-5

  • Online ISBN: 978-1-4939-7343-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics