Skip to main content

Allergenicity Assessment of Transgenic Wheat Lines In Silico

  • Protocol
  • First Online:
Wheat Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1679))

Abstract

Agriculture biotechnology is a promising tool for developing varieties with enhanced quality and quantity. Transgenic proteins expressed by genetically modified (GM) food crops improve crop characteristics like nutritional value, taste, and texture, and endow plants with resistance against fungus, pests, and insects. Despite such potential benefits, there are concerns regarding possible adverse effects of GM crops on human health, animals and the environment. Among the proposed guidelines for GM food safety testing—the weight-of-evidence approach proposed by the Codex Alimentarius Commission (ALINORM 03/34A) is the most recent. Till date, several transgenic wheat lines have been developed and research is underway for further improvement. However, GM wheat is not being grown or consumed in any part of the world. In the present study, in silico tools were employed for safety testing of eight transgenes used for the development of transgenic wheat lines. Among the genes studied, none of them shared sequence homology with the reported allergens and may be safe for use in genetic engineering. In conclusion, gene selection for developing transgenic wheat lines should be done with utmost care to ensure its safety for feed and fodder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rommens CM (2007) Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering. J Agric Food Chem 55:4281–4288

    Article  CAS  PubMed  Google Scholar 

  2. Wollenweber B, Porter JR, Lubberstedt T (2005) Need for multidisciplinary research towards a second green revolution. Curr Opin Plant Biol 8:337–341

    Article  PubMed  Google Scholar 

  3. Beardsley T (1996) A good recent article on some of the implications of genetic findings and the uses to which they have been applied “Vital Data”. Sci Am 274:100–105

    Article  CAS  PubMed  Google Scholar 

  4. Feder BJ (1996) “Geneticists arm corn against corn borer, pest may still win”. A good account of an attempt to arm a crop plant with a built-in insecticide and the possible consequences. There is a good discussion of both effects on the target insects and the environment. The New York Times, July 23: p C1

    Google Scholar 

  5. Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    CAS  PubMed  Google Scholar 

  6. Wang J, Sampson HA (2011) Treatments for food allergy: how close are we? Immunol Res 54:83–94

    Article  Google Scholar 

  7. Sampson HA (2004) Update on food allergy. J Allergy Clin Immunol 113:805–819

    Article  CAS  PubMed  Google Scholar 

  8. Food and Agriculture Organization of the United Nations (2012) FAOSTAT database. http://faostat.fao.org/site/567/. Accessed 18 May 2012

  9. Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    Article  CAS  PubMed  Google Scholar 

  10. Kent NL, Evers AD (1994) Kent’s technology of cereals, 4th edn. Elsevier, Oxford

    Book  Google Scholar 

  11. Macrae R, Robinson RK, Sadler MJ (1993) Encyclopaedia of food science, food technology and nutrition. Academic Press, London

    Google Scholar 

  12. U.S. Environmental Protection Agency (EPA) Ag 101. Major crops grown in the United States. http://www.epa.gov/agriculture/ag101/cropmajor.html

  13. Wijmenga C, Gutierrez-Achury J (2014) Celiac disease genetics: past, present and future challenges. J Pediatr Gastroenterol Nutr 59(Suppl 1):S4–S7

    Article  CAS  PubMed  Google Scholar 

  14. Barrio J, Román E, Cilleruelo M, Márquez M, Mearin M, Fernández C (2016) Health-related quality of life in Spanish children with celiac disease. J Pediatr Gastroenterol Nutr 62:603–608

    Article  Google Scholar 

  15. Theethira TG, Dennis M, Leffler DA (2014) Nutritional consequences of celiac disease and the gluten-free diet. Expert Rev Gastroenterol Hepatol 8:123–129

    Article  CAS  PubMed  Google Scholar 

  16. Caruso R, Pallone F, Stasi E, Romeo S, Monteleone G (2013) Appropriate nutrient supplementation in celiac disease. Ann Med 45:522–531

    Article  CAS  PubMed  Google Scholar 

  17. Palosuo K (2003) Update on wheat hypersensitivity. Curr Opin Allergy Clin Immunol 3:205–209

    Article  PubMed  Google Scholar 

  18. Inomata N (2009) Wheat allergy. Curr Opin Allergy Clin Immunol 9:238–243

    Article  CAS  PubMed  Google Scholar 

  19. Weichel M, Vergoossen NJ, Bonomi S, Scibilia J, Ortolani C, Ballmer-Weber BK et al (2006) Screening the allergenic repertoires of wheat and maize with sera from double-blind, placebo-controlled food challenge positive patients. Allergy 61:1–135

    Google Scholar 

  20. van Ree R, Voitenko V, van Leeuwen WA, Aalberse RC (1992) Profilin is a cross-reactive allergen in pollen and vegetable foods. Int Arch Allergy Immunol 98:97–104

    Article  PubMed  Google Scholar 

  21. Palacin A, Varela J, Quirce S, Del P, Tordesillas L, Barranco P et al (2009) Recombinant lipid transfer protein Tri a 14: a novel heat and proteolytic resistant tool for the diagnosis of baker’s asthma. Clin Exp Allergy 39:1267–1276

    Article  CAS  PubMed  Google Scholar 

  22. Palacin A, Quirce S, Armentia A, Fernandez-Nieto M, Pacios LF, Asensio T et al (2007) Wheat lipid transfer protein is a major allergen associated with baker’s asthma. J Allergy Clin Immunol 120:1132–1138

    Article  CAS  PubMed  Google Scholar 

  23. Morita E, Matsuo H, Mihara S, Morimoto K, Savage AW, Tatham AS (2003) Fast omega-gliadin is a major allergen in wheat-dependent exercise-induced anaphylaxis. J Dermatol Sci 33:99–104

    Article  CAS  PubMed  Google Scholar 

  24. Weichel M, Glaser AG, Ballmer-Weber BK, Schmid-Grendelmeier P, Crameri R (2006) Wheat and maize thioredoxins: a novel cross-reactive cereal allergen family related to baker’s asthma. J Allergy Clin Immunol 117:676–681

    Article  CAS  PubMed  Google Scholar 

  25. Matsuo H, Kohno K, Niihara H, Morita E (2005) Specific IgE determination to epitope peptides of {omega}-5 gliadin and high molecular weight glutenin subunit is a useful tool for diagnosis of wheat-dependent exercise-induced anaphylaxis. J Immunol 175:8116–8122

    Article  CAS  PubMed  Google Scholar 

  26. Baar A, Pahr S, Constantin C, Scheiblhofer S, Thalhamer J, Giavi S et al (2012) Molecular and immunological characterization of Tri a 36, a low molecular weight glutenin, as a novel major wheat food allergen. J Immunol 189:3018–3025

    Article  CAS  PubMed  Google Scholar 

  27. Breiteneder H, Ebner C (2000) Molecular and biochemical classification of plant-derived food allergens. J Allergy Clin Immunol 106:27–36

    Article  CAS  PubMed  Google Scholar 

  28. Sampson HA (1999) Food allergy: Part 1. Immunopathogenesis and clinical disorders. J Allergy Clin Immunol 103:717–728

    Article  CAS  PubMed  Google Scholar 

  29. Sicherer SH, Sampson HA (2006) Food allergy. J Allergy Clin Immunol 117:S470–S475

    Article  CAS  PubMed  Google Scholar 

  30. Food and Agriculture Organization/World Health Organization (2001) Evaluation of the allergenicity of genetically modified foods: report of a Joint FAO/WHO Expert Consultation, Rome, Italy, Jan 22–25. http://www.fao.org/docrep/007/y0820e/y0820e00.htm

    Google Scholar 

  31. Codex Alimentarius Commission (2003) Alinorm 03/34: Joint FAO/WHO Food Standard Programme, Codex Alimentarius Commission, Appendix III, Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants and Appendix IV, Annex on the assessment of possible allergenicity, 25th Session, Rome, Italy 30 June–5 July, 2003. pp 47–60. http://ftp.fao.org/es/esn/food/guide_plants_en.p

  32. Goodman RE, Hefle SL (2005) Gaining perspective on the allergenicity assessment of genetically modified food crops. Expert Rev Clin Immunol 1:561–578

    Article  CAS  PubMed  Google Scholar 

  33. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hileman RE, Silvanovich A, Goodman RE, Rice EA, Holleschak G, Astwood JD et al (2002) Bioinformatic methods for allergenicity assessment using a comprehensive allergen database. Int Arch Allergy Immunol 128:280–291

    Article  CAS  PubMed  Google Scholar 

  36. Mishra A, Gaur SN, Singh BP, Arora N (2012) In silico assessment of the potential allergenicity of transgenes used for the development of GM food crops. Food Chem Toxicol 50:1334–1339

    Article  CAS  PubMed  Google Scholar 

  37. Sanchez R, Sali A (2000) Comparative protein structure modeling. Introduction and practical examples with modeller. Methods Mol Biol 143:97–129

    CAS  PubMed  Google Scholar 

  38. Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N et al (2010) The immune epitope database 2.0. Nucleic Acids Res 38(Database issue):D854–D862

    Article  CAS  PubMed  Google Scholar 

  39. Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40–48

    Article  CAS  PubMed  Google Scholar 

  40. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21:243–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15:2558–2567

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B-cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8:e1002829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    Article  CAS  PubMed  Google Scholar 

  44. Bui HH, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton KA et al (2005) Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57:304–314

    Article  CAS  PubMed  Google Scholar 

  45. Heckerman D, Kadie C, Listgarten J (2007) Leveraging information across HLA alleles/supertypes improves epitope prediction. J Comput Biol 14:736–746

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mishra, A., Arora, N. (2017). Allergenicity Assessment of Transgenic Wheat Lines In Silico. In: Bhalla, P., Singh, M. (eds) Wheat Biotechnology. Methods in Molecular Biology, vol 1679. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7337-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7337-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7335-4

  • Online ISBN: 978-1-4939-7337-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics