Skip to main content

Immunity in Sepsis

  • Chapter
  • First Online:
Sepsis
  • 3976 Accesses

Abstract

Sepsis, now defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, initiates a complex interplay of host processes. Several lines of clinical evidence show that patients with severe sepsis not only exhibited an exaggerated inflammation but also exhibited multiple defects in adaptive immunity. Data suggest that a subgroup of septic patients with severe immune alterations is at high risk of death or nosocomial infection and therefore could benefit from adjunctive immune stimulating therapies. This finding has been termed the persistent inflammation/immunosuppression and catabolism syndrome. The immediate inflammatory response is presumed to be predominantly driven by danger signals produced by pathogens, which bind to innate immune receptors activating a complex intracellular signaling system that leads to the expression of several common gene classes that are involved in inflammation, adaptive immunity, and cellular metabolism, but pathophysiology of immunosuppression is not completely understood. This review details the mediators in sepsis linking to innate and adaptive immune systems to explain part of pathophysiology of this severe condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10. https://doi.org/10.1001/jama.2016.0287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045.

    Article  CAS  PubMed  Google Scholar 

  3. Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock. 2001;16(2):83–96.

    Article  CAS  PubMed  Google Scholar 

  4. Ayala A, Chaudry IH. Immune dysfunction in murine polymicrobial sepsis: mediators, macrophages, lymphocytes and apoptosis. Shock. 1996;6(Suppl 1):S27–38.

    Article  PubMed  Google Scholar 

  5. Opal SM, Huber CE. Bench-to-bedside review: Toll-like receptors and their role in septic shock. Crit Care. 2002;6(2):125–36.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang H, Yang H, Czura CJ, Sama AE, Tracey KJ. HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1768–73.

    Article  CAS  PubMed  Google Scholar 

  7. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8(10):776–87. https://doi.org/10.1038/nri2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–8. https://doi.org/10.1016/S1473-3099(13)70001-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med. 2000;343(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  10. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.

    Article  CAS  PubMed  Google Scholar 

  11. Yamamoto M, Takeda K, Akira S. TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol. 2004;40:861–8.

    Article  CAS  PubMed  Google Scholar 

  12. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2:675–80.

    Article  CAS  PubMed  Google Scholar 

  13. Motta V, Soares F, Sun T, Philpott DJ. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev. 2015;95(1):149–78. https://doi.org/10.1152/physrev.00009.2014.

    Article  PubMed  Google Scholar 

  14. Proell M, Riedl SJ, Fritz JH, Rojas AM, Schwarzenbacher R. The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS One. 2008;3(4):e2119. https://doi.org/10.1371/journal.pone.0002119.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science. 2006;314(5801):994–7.

    Article  PubMed  Google Scholar 

  16. Paz S, Sun Q, Nakhaei P, Romieu-Mourez R, Goubau D, Julkunen I, et al. Induction of IRF-3 and IRF-7 phosphorylation following activation of the RIG-I pathway. Cell Mol Biol (Noisy-le-grand). 2006;52(1):17–28.

    CAS  Google Scholar 

  17. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–52.

    Article  CAS  PubMed  Google Scholar 

  18. Ward PA. The harmful role of c5a on innate immunity in sepsis. J Innate Immun. 2010;2(5):439–45. https://doi.org/10.1159/000317194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramnath R, Weing S, He M, Sun J, Zhang H, Bawa M, Bhatia M. Inflammatory mediators in sepsis: cytokines, chemokines, adhesion molecules and gases. J. Organ Dysfunction. 2006;2:80–92.

    Article  Google Scholar 

  20. Bierhaus A, Nawroth PP. Modulation of the vascular endothelium during infection—the role of NF-kappa B activation. Contrib Microbiol. 2003;10:86–105.

    Article  CAS  PubMed  Google Scholar 

  21. Parikh SM. Dysregulation of the angiopoietin-Tie-2 axis in sepsis and ARDS. Virulence. 2013;4(6):517–24. https://doi.org/10.4161/viru.24906.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Delves PJ, Roitt IM. The immune system. Second of two parts. N Engl J Med. 2000;343(2):108–17. https://doi.org/10.1056/NEJM200007133430207.

    Article  CAS  PubMed  Google Scholar 

  23. Aziz M, Jacob A, Yang WL, Matsuda A, Wang P. Current trends in inflammatory and immunomodulatory mediators in sepsis. J Leukoc Biol. 2013;93(3):329–42. https://doi.org/10.1189/jlb.0912437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Venet F, Chung CS, Monneret G, Huang X, Horner B, Garber M, Ayala A. Regulatory T cell populations in sepsis and trauma. J Leukoc Biol. 2008;83(3):523–35.

    Article  CAS  PubMed  Google Scholar 

  25. Wiersinga WJ. Current insights in sepsis: from pathogenesis to new treatment targets. Curr Opin Crit Care. 2011;17(5):480–6. https://doi.org/10.1097/MCC.0b013e32834a4aeb.

    Article  PubMed  Google Scholar 

  26. Hotchkiss RS, Opal S. Immunotherapy for sepsis--a new approach against an ancient foe. N Engl J Med. 2010;363(1):87–9. https://doi.org/10.1056/NEJMcibr1004371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med. 1996;24(7):1125–8.

    Article  CAS  PubMed  Google Scholar 

  28. Bone RC. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. Crit Care Med. 1996;24:163–72.

    Article  CAS  PubMed  Google Scholar 

  29. Remick D, Manohar P, Bolgos G, Rodriguez J, Moldawer L, Wollenberg G. Blockade of tumor necrosis factor reduces lipopolysaccharide lethality, but not the lethality of cecal ligation and puncture. Shock. 1995;4(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  30. Eskandari MK, Bolgos G, Miller C, Nguyen DT, DeForge LE, Remick DG. Anti-tumor necrosis factor antibody therapy fails to prevent lethality after cecal ligation and puncture or endotoxemia. J Immunol. 1992;148(9):2724–30.

    CAS  PubMed  Google Scholar 

  31. Osuchowski MF, Welch K, Siddiqui J, Remick DG. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol. 2006;177(3):1967–74.

    Article  CAS  PubMed  Google Scholar 

  32. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. Inflammation and host response to injury large-scale collaborative research program. A genomic storm in critically injured humans. J Exp Med. 2011;208(13):2581–90. https://doi.org/10.1084/jem.20111354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72(6):1491–501. https://doi.org/10.1097/TA.0b013e318256e000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Walton AH, Muenzer JT, Rasche D, Boomer JS, Sato B, Brownstein BH, et al. Reactivation of multiple viruses in patients with sepsis. PLoS One. 2014;9(2):e98819. https://doi.org/10.1371/journal.pone.0098819.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Drifte G, Dunn-Siegrist I, Tissières P, Pugin J. Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit Care Med. 2013;41(3):820–32. https://doi.org/10.1097/CCM.0b013e318274647d.

    Article  CAS  PubMed  Google Scholar 

  36. Hashiba M, Huq A, Tomino A, Hirakawa A, Hattori T, Miyabe H, et al. Neutrophil extracellular traps in patients with sepsis. J Surg Res. 2015;194(1):248–54. https://doi.org/10.1016/j.jss.2014.09.033.

    Article  CAS  PubMed  Google Scholar 

  37. Hynninen M, Pettilä V, Takkunen O, Orko R, Jansson SE, Kuusela P, et al. Predictive value of monocyte histocompatibility leukocyte antigen-DR expression and plasma interleukin-4 and -10 levels in critically ill patients with sepsis. Shock. 2003;20(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  38. Munoz C, Carlet J, Fitting C, Misset B, Blériot JP, Cavaillon JM. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest. 1991;88(5):1747–54. https://doi.org/10.1172/JCI115493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nierhaus A, Montag B, Timmler N, Frings DP, Gutensohn K, Jung R, et al. Reversal of immunoparalysis by recombinant human granulocyte-macrophage colony-stimulating factor in patients with severe sepsis. Intensive Care Med. 2003;29(4):646–51.

    Article  PubMed  Google Scholar 

  40. Döcke WD, Randow F, Syrbe U, Krausch D, Asadullah K, Reinke P, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med. 1997;3(6):678–81.

    Article  PubMed  Google Scholar 

  41. Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K, Gregor J, et al. Granulocyte-macrophage colony stimulating factor to reverse sepsis-associated immunosuppression: a double blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009;180:640–8. https://doi.org/10.1164/rccm.200903-0363OC.

    Article  CAS  PubMed  Google Scholar 

  42. Huang X, Venet F, Wang YL, Lepape A, Yuan Z, Chen Y, et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci U S A. 2009;106(15):6303–8. https://doi.org/10.1073/pnas.0809422106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306(23):2594–605. https://doi.org/10.1001/jama.2011.1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Drewry AM, Samra N, Skrupky LP, Fuller BM, Compton SM, Hotchkiss RS. Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock. 2014;42(5):383–91. https://doi.org/10.1097/SHK.0000000000000234.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coopersmith CM, Amiot DM 2nd, Stromberg PE, Dunne WM, Davis CG, Osborne DF, et al. Antibiotics improve survival and alter the inflammatory profile in a murine model of sepsis from Pseudomonas aeruginosa pneumonia. Shock. 2003;19(5):408–14.

    Article  CAS  PubMed  Google Scholar 

  46. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64.

    CAS  PubMed  Google Scholar 

  47. Fehérvari Z, Sakaguchi S. CD4+ Tregs and immune control. J Clin Invest. 2004;114(9):1209–17.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Scumpia PO, Delano MJ, Kelly KM, O'Malley KA, Efron PA, McAuliffe PF, et al. Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis. J Immunol. 2006;177(11):7943–9.

    Article  CAS  PubMed  Google Scholar 

  49. Wisnoski N, Chung CS, Chen Y, Huang X, Ayala A. The contribution of CD4+ CD25+ T-regulatory-cells to immune suppression in sepsis. Shock. 2007;27(3):251–7. https://doi.org/10.1097/01.shk.0000239780.33398.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Javier Fonseca-Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Fonseca-Ruiz, N.J. (2018). Immunity in Sepsis. In: Ortiz-Ruiz, G., Dueñas-Castell, C. (eds) Sepsis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7334-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7334-7_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7332-3

  • Online ISBN: 978-1-4939-7334-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics