Skip to main content

The Role of Language in Structure-Dependent Cognition

  • Chapter
  • First Online:
Neural Mechanisms of Language

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

Abstract

The ability to construct an indefinite number of ideas by combining a finite set of elements in a hierarchically structured sequence is a signal characteristic of human cognition. To illustrate, consider the sentence The girl who kissed the boy closed the door. It is immediately clear to any proficient English speaker that the state of affairs described by this sentence is that the girl is doing the closing. This specific interpretation is as effortless as automatic, and if anybody interpreted it any differently it might be sufficient grounds for doubting her proficiency of the English language. Nonetheless, one might wonder why, for example, we do not interpret the noun phrase the boy as being the subject of the verb phrase closed the door. After all, the boy is linearly much more proximal to the verb phrase than is the girl. Furthermore, the sentence actually even contains the well-formed fragment […] the boy closed the door, in which, of course, it is the boy doing the closing. Yet, when we consider the full sentence, the relative linear proximity of its component elements does not appear to guide our interpretation. How is it then that we so effortlessly and automatically interpret the sentence above as describing a state of affairs in which a (certain) girl, who just so happens to have given a kiss to a (certain) boy, has closed the door? One explanation, which is perhaps the founding intuition of the modern study of language as a mental phenomenon, is that despite the fact that language is typically manifested as a temporally linear sequence of utterances, in our mind we spontaneously build a rich abstract hierarchical representation of how each discrete element within the sequence relates to every other element. It is the building of these abstract representations that allows us to assign meaning to strings of utterances. Although this ability is most prominently displayed in our use of natural language, it also characterizes several other aspects of human cognition such as logic reasoning, number and music cognition, action sequences and spatial relations, among others. As I will describe below, at least at an intuitive level, these seemingly distant domains of human cognition all appear to be organized at an abstract level and might therefore share, hidden behind a linear surface structure, the hierarchical and recursive features that are most commonly described by the syntactic trees built by linguists (see Fig. 5.1 for an example).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As described below, given that deductive reasoning is most often elicited by the means of verbal stimuli, it is trivial that linguistic processes are needed to apprehend the stimuli. What is under discussion here is whether linguistic processes play a role in deductive reasoning beyond the initial encoding of verbal materials.

  2. 2.

    It might be worth clarifying that so-called Mental Rules theories of deduction (e.g., Osherson and Falmagne 1975), despite being sometimes portrayed as language based (see Goel et al. 1998, 2000), might in fact be better understood as describing deductive inference as a “syntax-like,” algebraic, computation, rather than a linguistic one (cf., Monti et al. 2007).

References

  • Beall, J. C., & van Fraassen, B. C. (2003). Possibilities and paradox: An introduction to modal and many-valued logic. Oxford: Oxford University Press.

    Google Scholar 

  • Bekinschtein, T. A., Davis, M. H., Rodd, J. M., & Owen, A. M. (2011). Why clowns taste funny: The relationship between humor and semantic ambiguity. Journal of Neuroscience, 31, 9665–9671.

    Article  PubMed  Google Scholar 

  • Bellugi, U., Marks, A. B., Bihrle, A., & Sabo, H. (1993). Dissociation between language and cognitive functions in Williams syndrome. In D. Bishop & K. Mogford (Eds.), Language development in exceptional circumstances (p. 177–189). Hove: Psychology.

    Google Scholar 

  • Ben-Shachar, M., Hendler, T., Kahn, I., Ben-Bashat, D., & Grodzinsky, Y. (2003). The neural reality of syntactic transformations evidence from functional magnetic resonance imaging. Psychological Science, 14, 433–440.

    Article  PubMed  Google Scholar 

  • Bloom, P. (1994). Generativity within language and other cognitive domains. Cognition, 51, 177–189.

    Article  PubMed  Google Scholar 

  • Boeckx, C. (2010). Language in cognition: Uncovering mental structures and the rules behind them. Malden: Wiley.

    Google Scholar 

  • Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151–188.

    Article  PubMed  Google Scholar 

  • Bornkessel, I., Zysset, S., Friederici, A. D., von Cramon, D. Y., & Schlesewsky, M. (2005). Who did what to whom? The neural basis of argument hierarchies during language comprehension. Neuroimage, 26, 221–233.

    Article  PubMed  Google Scholar 

  • Butterworth, B. (2008). Developmental dyscalculia. In J. Reed & J. Warner-Rogers (Eds.) Child neuropsychology: Concepts, theory, and practice (pp. 357–374). Chichester: Wiley.

    Google Scholar 

  • Canessa, N., Gorini, A., Cappa, S. F., Piattelli-Palmarini, M., Danna, M., Fazio, F., et al. (2005). The effect of social content on deductive reasoning: An fMRI study. Human Brain Mapping, 26, 30–43.

    Article  PubMed  Google Scholar 

  • Cappelletti, M., Butterworth, B., & Kopelman, M. (2001). Spared numerical abilities in a case of semantic dementia. Neuropsychologia, 39, 1224–1239.

    Article  PubMed  Google Scholar 

  • Cheng, P. W., & Holyoak, K. J. (1985). Pragmatic reasoning schemas. Cognitive Psychology, 17, 391–416.

    Article  PubMed  Google Scholar 

  • Chomsky, N. (1983). Noam Chomsky’s views on the psychology of language and thought. In R. W. Rieber (Ed.), Dialogues on the psychology of language and thought: Conversations with Noam Chomsky, Charles Osgood, Jean Piaget, Ulric Neisser, and Marcel Kinsbourne. New York: Plenium.

    Google Scholar 

  • Chomsky, N. (1998). Language and problems of knowledge: The Managua lectures (Vol. 16). Cambridge, MA: MIT Press.

    Google Scholar 

  • Corballis, M. C. (1992). On the evolution of language and generativity. Cognition, 44, 197–226.

    Article  PubMed  Google Scholar 

  • Dapretto, M., & Bookheimer, S. Y. (1999). Form and content: Dissociating syntax and semantics in sentence comprehension. Neuron, 24, 427–432.

    Article  PubMed  Google Scholar 

  • Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224.

    Article  PubMed  Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.

    Article  PubMed  Google Scholar 

  • Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970–974.

    Article  PubMed  Google Scholar 

  • Delazer, M., Girelli, L., Semenza, C., & Denes, G. (1999). Numerical skills and aphasia. Journal of the International Neuropsychological Society, 5, 213–221.

    Article  PubMed  Google Scholar 

  • Fadiga, L., Craighero, L., & D’Ausilio, A. (2009). Broca’s area in language, action, and music. Annals of the New York Academy of Sciences, 1169, 448–458.

    Article  PubMed  Google Scholar 

  • Fangmeier, T., Knauff, M., Ruff, C. C., & Sloutsky, V. (2006). fMRI evidence for a three-stage model of deductive reasoning. Journal of Cognitive Neuroscience, 18, 320–334.

    Article  PubMed  Google Scholar 

  • Fitch, W. T., Hauser, M. D., & Chomsky, N. (2005). The evolution of the language faculty: Clarifications and implications. Cognition, 97, 179–210.

    Article  PubMed  Google Scholar 

  • Fodor, J. A. (1975). The language of thought (Vol. 5). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Friederici, A. D. (2004). Processing local transitions versus long-distance syntactic hierarchies. Trends in Cognitive Sciences, 8, 245–247.

    Article  PubMed  Google Scholar 

  • Gelman, R., & Gallistel, C. R. (2004). Language and the origin of numerical concepts. Science, 306, 441–443.

    Article  PubMed  Google Scholar 

  • Goel, V., Buchel, C., Frith, C., & Dolan, R. J. (2000). Dissociation of mechanisms underlying syllogistic reasoning. Neuroimage, 12, 504–514.

    Article  PubMed  Google Scholar 

  • Goel, V., & Dolan, R. J. (2001). Functional neuroanatomy of three-term relational reasoning. Neuropsychologia, 39, 901–909.

    Article  PubMed  Google Scholar 

  • Goel, V., & Dolan, R. J. (2003). Explaining modulation of reasoning by belief. Cognition, 87, B11–B22.

    Article  PubMed  Google Scholar 

  • Goel, V., Gold, B., Kapur, S., & Houle, S. (1997). The seats of reason? An imaging study of deductive and inductive reasoning. NeuroReport, 8, 1305–1310.

    Article  PubMed  Google Scholar 

  • Goel, V., Gold, B., Kapur, S., & Houle, S. (1998). Neuroanatomical correlates of human reasoning. Journal of Cognitive Neuroscience, 10, 293–302.

    Article  PubMed  Google Scholar 

  • Grice, H. P. (1991). Studies in the Way of Words. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Grodzinsky, Y., & Santi, A. (2008). The battle for Broca’s region. Trends in Cognitive Sciences, 12, 474–480.

    Article  PubMed  Google Scholar 

  • Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature, 445, 429–432.

    Article  PubMed  Google Scholar 

  • Hadamard, J. (1954). An essay on the psychology of invention in the mathematical field. Mineola: Courier Corporation.

    Google Scholar 

  • Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9, 416–423.

    Article  PubMed  Google Scholar 

  • Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301–307.

    Article  PubMed  Google Scholar 

  • Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298, 1569–1579.

    Article  PubMed  Google Scholar 

  • Hoenig, K., & Scheef, L. (2005). Mediotemporal contributions to semantic processing: fMRI evidence from ambiguity processing during semantic context verification. Hippocampus, 15, 597–609.

    Article  PubMed  Google Scholar 

  • Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F., & Thulborn, K. R. (1996). Brain activation modulated by sentence comprehension. Science, 274, 114.

    Article  PubMed  Google Scholar 

  • Knauff, M., Fangmeier, T., Ruff, C. C., & Johnson-Laird, P. (2003). Reasoning, models, and images: Behavioral measures and cortical activity. Journal of Cognitive Neuroscience, 15, 559–573.

    Article  PubMed  Google Scholar 

  • Koscik, T. R., & Tranel, D. (2012). The human ventromedial prefrontal cortex is critical for transitive inference. Journal of Cognitive Neuroscience, 24, 1191–1204.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lees, R. B., & Chomsky, N. (1957). Syntactic structures. Language, 33, 375–408.

    Article  Google Scholar 

  • Li, P., & Gleitman, L. (2002). Turning the tables: Language and spatial reasoning. Cognition, 83, 265–294.

    Article  PubMed  Google Scholar 

  • Locke, J. (1824). The works of John Locke in nine volumes. London: Rivington.

    Google Scholar 

  • Losonsky, M. (1999). Humboldt: ‘On language’: On the diversity of human language construction and its influence on the mental development of the human species. Cambridge: Cambridge University Press.

    Google Scholar 

  • Maruyama, M., Pallier, C., Jobert, A., Sigman, M., & Dehaene, S. (2012). The cortical representation of simple mathematical expressions. Neuroimage, 61, 1444–1460.

    Article  PubMed  Google Scholar 

  • Monti, M. M., & Osherson, D. N. (2012). Logic, language and the brain. Brain Research, 1428, 33–42.

    Article  PubMed  Google Scholar 

  • Monti, M. M., Osherson, D. N., Martinez, M. J., & Parsons, L. M. (2007). Functional neuroanatomy of deductive inference: A language-independent distributed network. Neuroimage, 37, 1005–1016.

    Article  PubMed  Google Scholar 

  • Monti, M. M., Parsons, L. M., & Osherson, D. N. (2009). The boundaries of language and thought in deductive inference. Proceedings of the National Academy of Sciences, 106, 12554–12559.

    Article  Google Scholar 

  • Monti, M. M., Parsons, L. M., & Osherson, D. N. (2012). Thought beyond language neural dissociation of algebra and natural language. Psychological Science, 23(8), 914–922.

    Article  PubMed  Google Scholar 

  • Noveck, I. A., Goel, V., & Smith, K. W. (2004). The neural basis of conditional reasoning with arbitrary content. Cortex, 40, 613–622.

    Article  PubMed  Google Scholar 

  • Novick, J. M., Trueswell, J. C., & Thompson-Schill, S. L. (2010). Broca’s area and language processing: Evidence for the cognitive control connection. Language and Linguistics Compass, 4, 906–924.

    Article  Google Scholar 

  • Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 87(24), 9868–9872.

    Article  Google Scholar 

  • Osherson, D., & Falmagne, R. (1975). Logic and models of logical thinking. In R. J. Falmagne (Ed.), Reasoning: Representation and process in children and adults (pp. 81–92). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Parsons, L. M., & Osherson, D. (2001). New evidence for distinct right and left brain systems for deductive versus probabilistic reasoning. Cerebral Cortex, 11, 954–965.

    Article  PubMed  Google Scholar 

  • Pinker, S. (1984). Language learnability and language development. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Pinker, S., & Jackendoff, R. (2005). The faculty of language: What’s special about it? Cognition, 95, 201–236.

    Article  PubMed  Google Scholar 

  • Polk, T. A., & Newell, A. (1995). Deduction as verbal reasoning. Psychological Review, 102, 533.

    Article  Google Scholar 

  • Prado, J., & Noveck, I. A. (2007). Overcoming perceptual features in logical reasoning: A parametric functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 19, 642–657.

    Article  PubMed  Google Scholar 

  • Prado, J., Van Der Henst, J.-B., & Noveck, I. A. (2010a). Recomposing a fragmented literature: How conditional and relational arguments engage different neural systems for deductive reasoning. Neuroimage, 51, 1213–1221.

    Article  PubMed  Google Scholar 

  • Prado, J., Noveck, I. A., & Van Der Henst, J.-B. (2010b). Overlapping and distinct neural representations of numbers and verbal transitive series. Cerebral Cortex, 20, 720–729.

    Article  PubMed  Google Scholar 

  • Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197, 335–359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reverberi, C., Cherubini, P., Frackowiak, R. S., Caltagirone, C., Paulesu, E., & Macaluso, E. (2010). Conditional and syllogistic deductive tasks dissociate functionally during premise integration. Human Brain Mapping, 31, 1430–1445.

    Article  PubMed  Google Scholar 

  • Reverberi, C., Cherubini, P., Rapisarda, A., Rigamonti, E., Caltagirone, C., Frackowiak, R. S., et al. (2007). Neural basis of generation of conclusions in elementary deduction. Neuroimage, 38, 752–762.

    Article  PubMed  Google Scholar 

  • Reverberi, C., Shallice, T., D’Agostini, S., Skrap, M., & Bonatti, L. L. (2009). Cortical bases of elementary deductive reasoning: Inference, memory, and metadeduction. Neuropsychologia, 47, 1107–1116.

    Article  PubMed  Google Scholar 

  • Rips, L. J. (1994). The psychology of proof: Deductive reasoning in human thinking. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rodriguez-Moreno, D., & Hirsch, J. (2009). The dynamics of deductive reasoning: An fMRI investigation. Neuropsychologia, 47(4), 949–961.

    Article  PubMed  Google Scholar 

  • Sahin, N. T., Pinker, S., & Halgren, E. (2006). Abstract grammatical processing of nouns and verbs in Broca’s area: Evidence from fMRI. Cortex, 42, 540–562.

    Article  PubMed  Google Scholar 

  • Sapir, E. (1929). The status of linguistics as a science. Language, 5, 207–214.

    Article  Google Scholar 

  • Sapir, E. (1931). Conceptual categories in primitive languages. Science, 74(1927), 578.

    Google Scholar 

  • Spelke, E. S. (2003). What makes us smart? Core knowledge and natural language. In D. Gentner & S. Goldin-Meadow (Eds.), Language in mind: Advances in the study of language and thought (pp. 277–311). Cambridge, MA: MIT Press.

    Google Scholar 

  • Spelke, E. S., & Tsivkin, S. (2001). Language and number: A bilingual training study. Cognition, 78, 45–88.

    Article  PubMed  Google Scholar 

  • Stanescu-Cosson, R., Pinel, P., van de Moortele, P.-F., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia. Brain, 123, 2240–2255.

    Article  PubMed  Google Scholar 

  • Tettamanti, M., & Weniger, D. (2006). Broca’s area: A supramodal hierarchical processor? Cortex, 42, 491–494.

    Article  PubMed  Google Scholar 

  • Uddén, J., & Bahlmann, J. (2012). A rostro-caudal gradient of structured sequence processing in the left inferior frontal gyrus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 2023–2032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varley, R., & Siegal, M. (2000). Evidence for cognition without grammar from causal reasoning and ‘theory of mind’ in an agrammatic aphasic patient. Current Biology, 10, 723–726.

    Article  PubMed  Google Scholar 

  • Varley, R. A., Klessinger, N. J., Romanowski, C. A., & Siegal, M. (2005). Agrammatic but numerate. Proceedings of the National Academy of Sciences of the United States of America, 102, 3519–3524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whorf, B. L. (1940). Science and linguistics. Indianapolis, IN: Bobbs-Merrill.

    Google Scholar 

  • Wildgruber, D., Ackermann, H., Kreifelts, B., & Ethofer, T. (2006). Cerebral processing of linguistic and emotional prosody: fMRI studies. Progress in Brain Research, 156, 249–268.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the James S. McDonnell Foundation Scholar Award. Parts of this work have appeared in Monti et al. (2009, 2012), and Monti and Osherson (2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin M. Monti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Monti, M.M. (2017). The Role of Language in Structure-Dependent Cognition. In: Mody, M. (eds) Neural Mechanisms of Language. Innovations in Cognitive Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-7325-5_5

Download citation

Publish with us

Policies and ethics