Skip to main content

A Rapid and Efficient ChIP Protocol to Profile Chromatin Binding Proteins and Epigenetic Modifications in Arabidopsis

  • Protocol
  • First Online:
Plant Chromatin Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1675))

Abstract

Chromatin immunoprecipitation (ChIP) is a widely used and very powerful procedure to identify the proteins that are associated with the DNA to regulate developmental processes. These proteins can be transcription factors, or specific histone variants and modified histones, which are all crucial for gene regulation. In order to obtain reliable results, ChIP must be carried out under highly reproducible conditions. Here, we describe a simple and fast ChIP protocol adapted for Arabidopsis seedlings, which can serve as a basis for other species, organs or more sophisticated procedures, such as the sequential ChIP. We also provide user-oriented troubleshooting to increase the chances of successful applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  2. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  3. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  4. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sequeira-Mendes J, Gutierrez C (2015) Links between genome replication and chromatin landscapes. Plant J 83:38–51

    Article  CAS  PubMed  Google Scholar 

  6. Kuo MH, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19:425–433

    Article  CAS  PubMed  Google Scholar 

  7. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25:99–104

    Article  CAS  PubMed  Google Scholar 

  8. Hoffman EA, Frey BL, Smith LM, Auble DT (2015) Formaldehyde crosslinking: a tool for the study of chromatin complexes. J Biol Chem 290:26404–26411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hyun BR, McElwee JL, Soloway PD (2015) Single molecule and single cell epigenomics. Methods 72:41–50

    Article  CAS  PubMed  Google Scholar 

  10. Bowler C, Benvenuto G, Laflamme P, Molino D, Probst AV, Tariq M, Paszkowski J (2004) Chromatin techniques for plant cells. Plant J 39:776–789

    Article  CAS  PubMed  Google Scholar 

  11. Villar CB, Kohler C (2010) Plant chromatin immunoprecipitation. Methods Mol Biol 655:401–411

    Article  CAS  PubMed  Google Scholar 

  12. Malapeira J, Khaitova LC, Mas P (2012) Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 109:21540–21545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Henaff E, Vives C, Desvoyes B, Chaurasia A, Payet J, Gutierrez C, Casacuberta JM (2014) Extensive amplification of the E2F transcription factor binding sites by transposons during evolution of Brassica species. Plant J 77:852–862

    Article  CAS  PubMed  Google Scholar 

  14. Malapeira J, Mas P (2014) ChIP-seq analysis of histone modifications at the core of the Arabidopsis circadian clock. Methods Mol Biol 1158:57–69

    Article  CAS  PubMed  Google Scholar 

  15. Komar DN, Mouriz A, Jarillo JA, Piñeiro M (2016) Chromatin immunoprecipitation assay for the identification of Arabidopsis protein-DNA interactions. J Vis Exp 107:e53422

    Google Scholar 

Download references

Acknowledgments

Z.V. and S.M. were recipients of Fellowships BES-2010-037158 (MINECO; Spain) and SFRH/BD/105550/2014 (FCT, Portugal), respectively. This work has been supported by grants BFU2012-34821 (MINECO), BIO2013-50098-EXP (MINECO) and BFU2015-68396-R (MINECO-FEDER), and by an institutional grant from Fundación Ramón Areces to the Centro de Biología Molecular Severo Ochoa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crisanto Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Desvoyes, B., Vergara, Z., Sequeira-Mendes, J., Madeira, S., Gutierrez, C. (2018). A Rapid and Efficient ChIP Protocol to Profile Chromatin Binding Proteins and Epigenetic Modifications in Arabidopsis. In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7318-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7317-0

  • Online ISBN: 978-1-4939-7318-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics