Skip to main content

Plant Gene Regulation Using Multiplex CRISPR-dCas9 Artificial Transcription Factors

  • Protocol
  • First Online:
Maize

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1676))

Abstract

Besides genome editing, the CRISPR-Cas9-based platform provides a new way of engineering artificial transcription factors (ATFs). Multiplex of guide RNA (gRNA) expression cassettes holds a great promise for many useful applications of CRISPR-Cas9. In this chapter, we provide a detailed protocol for building advanced multiplexed CRISPR-dCas9-Activator/repressor T-DNA vectors for carrying out transcriptional activation or repression experiments in plants. We specifically describe the assembly of multiplex T-DNA vectors that can express multiple gRNAs to activate a silenced gene, or to repress two independent miRNA genes simultaneously in Arabidopsis. We then describe a “higher-order” vector assembly method for increased multiplexing capacity. This higher-order assembly method in principle allows swift stacking of gRNAs cassettes that are only limited by the loading capacity of a cloning or expression vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopes R, Korkmaz G, Agami R (2016) Applying CRISPR-Cas9 tools to identify and characterize transcriptional enhancers. Nat Rev Mol Cell Biol 17(9):597–604. doi:10.1038/nrm.2016.79

    Article  CAS  PubMed  Google Scholar 

  2. Qi Y (2015) High efficient genome modification by designed Zinc finger nuclease. In: Advances in new technology for targeted modifications of plant genomes. Springer, New York, pp 39–53. doi:10.1007/978-1-4939-2556-8_3

    Google Scholar 

  3. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843–1846. doi:10.1126/science.1204094

    Article  CAS  PubMed  Google Scholar 

  4. Choo Y, Isalan M (2000) Advances in zinc finger engineering. Curr Opin Struct Biol 10:411–416

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez JP, Ullman C, Moore M, Choo Y, Chua NH (2002) Regulation of gene expression in Arabidopsis thaliana by artificial zinc finger chimeras. Plant Cell Physiol 43(12):1465–1472

    Article  CAS  PubMed  Google Scholar 

  6. Sera T (2009) Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 61:513–526

    Article  CAS  PubMed  Google Scholar 

  7. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  8. Paul JW 3rd, Qi Y (2016) CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Rep 35(7):1417–1427. doi:10.1007/s00299-016-1985-z

    Article  CAS  PubMed  Google Scholar 

  9. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan GC, Zhang F, Orkin SH, Bauer DE (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527(7577):192–197. doi:10.1038/nature15521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han R, Myacheva K, Zwart W, Elkon R, Agami R (2016) Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol 34(2):192–198. doi:10.1038/nbt.3450

    Article  CAS  PubMed  Google Scholar 

  11. Duan YB, Li J, Qin RY, RF X, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB (2016) Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol 90(1–2):49–62. doi:10.1007/s11103-015-0393-z

    Article  CAS  PubMed  Google Scholar 

  12. Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy DK, Zhu JK (2012) Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol 78(3):311–321. doi:10.1007/s11103-011-9866-x

    Article  CAS  PubMed  Google Scholar 

  13. Perez-Pinera P, Ousterout D, Brunger J, Farin A, Glass K, Guilak F, Crawford G, Hartemink A, Gersback C (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 10(3):239–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451. doi:10.1016/j.cell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10(10):977–979. doi:10.1038/nmeth.2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chavez A, Tuttle M, Pruitt B, Ewen-Campen B, Chari R, Ter-Ovanesyan D, Haque S, Cecchi R, Kowal E, Buchthal J, Housden B, Perrimon N, Collins J, Church G (2016) Comparison of Cas9 activators in multiple species. Nat Methods 13(7):563–567. doi:10.1038/NMETH.3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM (2014) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13(4):578–589. doi:10.1111/pbi.12284

    Article  PubMed  Google Scholar 

  18. Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985. doi:10.1104/pp.15.00636

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. doi:10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11(3):605–612

    Article  CAS  PubMed  Google Scholar 

  21. Uesugi M, Nyanguile O, Lu H, Levine A, Verdine G (1997) Induced α helix in the VP16 activation domain upon binding to a human TAF. Science 277:1310–1313

    Article  CAS  PubMed  Google Scholar 

  22. Carey M, Lin Y-S, Green M, Ptashne M (1990) A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature 345:361–364

    Article  CAS  PubMed  Google Scholar 

  23. Valton J, Dupuy A, Daboussi F, Thomas S, Marechal A, Macmaster R, Melliand K, Juillerat A, Duchateau P (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287(46):38427–38432. doi:10.1074/jbc.C112.408864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53. doi:10.1146/annurev.arplant.57.032905.105218

    Article  CAS  PubMed  Google Scholar 

  25. Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23(10):1163–1171. doi:10.1038/cr.2013.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838. doi:10.1038/nbt.2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jullien PE, Kinoshita T, Ohad N, Berger F (2006) Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18(6):1360–1372. doi:10.1105/tpc.106.041178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133(2):462–469. doi:10.1104/pp.103.027979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7(9):1494–1496. doi:10.1093/mp/ssu044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by a Collaborative Funding Grant from North Carolina Biotechnology Center and Syngenta (2016-CFG-8003) to Y.Q.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lowder, L.G., Malzahn, A., Qi, Y. (2018). Plant Gene Regulation Using Multiplex CRISPR-dCas9 Artificial Transcription Factors. In: Lagrimini, L. (eds) Maize. Methods in Molecular Biology, vol 1676. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7315-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7315-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7314-9

  • Online ISBN: 978-1-4939-7315-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics