Skip to main content

Clinical Features of β-Thalassemia and Sickle Cell Disease

  • Chapter
  • First Online:
Gene and Cell Therapies for Beta-Globinopathies

Part of the book series: Advances in Experimental Medicine and Biology ((ASGCT,volume 1013))

Abstract

Sickle cell disease (SCD) and β-thalassemia are among the most common inherited diseases, affecting millions of persons globally. It is estimated that 5–7% of the world’s population is a carrier of a significant hemoglobin variant. Without early diagnosis followed by initiation of preventative and therapeutic care, both SCD and β-thalassemia result in significant morbidity and early mortality. Despite great strides in the understanding of the molecular basis and pathophysiology of these conditions, the burden of disease remains high, particularly in limited resource settings. Current therapy relies heavily upon the availability and safety of erythrocyte transfusions to treat acute and chronic complications of these conditions, but frequent transfusions results in significant iron overload, as well as challenges from acquired infections and alloimmunization. Hydroxyurea is a highly effective treatment for SCD but less so for β-thalassemia, and does not represent curative therapy. As technology and use of cellular and gene therapies expand, SCD and thalassemia should be among the highest disease priorities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood 2010; 115: 4331-6.

    Google Scholar 

  2. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 2008; 86: 480-7.

    Google Scholar 

  3. Weatherall DJ. Single gene disorders or complex traits: lessons from the thalassaemias and other monogenic diseases. BMJ 2000; 321: 1117-20.

    Google Scholar 

  4. Pauling L, Itano HA, et al. Sickle cell anemia a molecular disease. Science 1949; 110: 543-8.

    Google Scholar 

  5. Ingram VM. Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 1957; 180: 326-8.

    Google Scholar 

  6. Ingram VM, Stretton AO. Genetic basis of the thalassaemia diseases. Nature 1959; 184: 1903-9.

    Google Scholar 

  7. Nathan DG, Gunn RB. Thalassemia: the consequences of unbalanced hemoglobin synthesis. Am J Med 1966; 41: 815-30.

    Google Scholar 

  8. Weatherall DJ, Clegg JB, Naughton MA. Globin synthesis in thalassaemia: an in vitro study. Nature 1965; 208: 1061-5.

    Google Scholar 

  9. Nienhuis AW, Anderson WF. Isolation and translation of hemoglobin messenger RNA from thalassemia, sickle cell anemia, and normal human reticulocytes. J Clin Invest 1971; 50: 2458-60.

    Google Scholar 

  10. Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN. Global burden of sickle cell anaemia in children under five, 2010-2050: modelling based on demographics, excess mortality, and interventions. PLoS Med 2013; 10: e1001484.

    Google Scholar 

  11. Weatherall DJ. Thalassemia as a global health problem: recent progress toward its control in the developing countries. Ann N Y Acad Sci 2010; 1202: 17-23.

    Google Scholar 

  12. Hecht F, Motulsky AG, Lemire RJ, Shepard TE. Predominance of hemoglobin Gower 1 in early human embryonic development. Science 1966; 152: 91-2.

    Google Scholar 

  13. Huehns ER, Flynn FV, Butler EA, Beaven GH. Two new haemoglobin variants in a very young human embryo. Nature 1961; 189: 496-7.

    Google Scholar 

  14. Albitar M, Care A, Peschle C, Liebhaber SA. Developmental switching of messenger RNA expression from the human alpha-globin cluster: fetal/adult pattern of theta-globin gene expression. Blood 1992; 80: 1586-91.

    Google Scholar 

  15. Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 2008; 322: 1839-42.

    Google Scholar 

  16. Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A 2008; 105: 1620-5.

    Google Scholar 

  17. Bank A. Regulation of human fetal hemoglobin: new players, new complexities. Blood 2006; 107: 435-43.

    Google Scholar 

  18. Donze D, Jeancake PH, Townes TM. Activation of delta-globin gene expression by erythroid Krupple-like factor: a potential approach for gene therapy of sickle cell disease. Blood 1996; 88: 4051-7.

    Google Scholar 

  19. Cooley T, Lee P. Series of cases of splenomegaly in children with anemia and peculiar bone changes. Tr Am Pediat Soc 1925; 37: 29.

    Google Scholar 

  20. von Jaksch R. Uber leukamie and leukocytose im kindesalter. Wien Klin Wchnschr 1889; 2: 435.

    Google Scholar 

  21. Cooley T, Lee P. Anemia in children with splenomegaly and peculiar changes in the bones. Report of cases. Am J Dis Child 1927; 34: 347-63.

    Google Scholar 

  22. Whipple G, Bradford W. Racial or Familial Anemia of Children. Am J Dis Child 1932; 44: 336.

    Google Scholar 

  23. Whipple G, Bradford W. Mediterranean Disease–Thalassemia (Erythroblastic Anemia of Cooley). J Pediatr 1936; 9: 279-311.

    Google Scholar 

  24. Wintrobe MM, Matthews E, Pollack R, Dobyns BM. A familial hematopoeitic disorder in Italian adolescents and adults: resembling Mediterranean disease (Thalassemia). JAMA 1940; 114: 1530-8.

    Google Scholar 

  25. Dameshek W. Anerythroblastic type of Cooley's erythroblastic anemia. Am J Med Sci 1940; 200: 445-54.

    Google Scholar 

  26. Neel JV, Valentine WN. Further studies on the genetics of thalassemia. Genetics 1946; 38: 38-63.

    Google Scholar 

  27. Williams TN, Weatherall DJ. World distribution, population genetics, and health burden of the hemoglobinopathies. Cold Spring Harb Perspect Med 2012; 2: a011692.

    Google Scholar 

  28. Weatherall DJ. Thalassaemia and malaria, revisited. Ann Trop Med Parasitol 1997; 91: 885-90.

    Google Scholar 

  29. Chotivanich K, Udomsangpetch R, Pattanapanyasat K, Chierakul W, Simpson J, Looareesuwan S, et al. Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe P falciparum malaria. Blood 2002; 100: 1172-6.

    Google Scholar 

  30. Thein SL. The molecular basis of beta-thalassemia. Cold Spring Harb Perspect Med 2013; 3: a011700.

    Google Scholar 

  31. Wajcman H, Patrinos G, Modradakhani K, Borg J, Joly P. A Database of Hemoglobin Variants and Thalassemias. http://globin.bx.psu.edu/hbvar/menu.html (accessed 4/16/2014.

  32. Weatherall DJ. Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet 2001; 2: 245-55.

    Google Scholar 

  33. Higgs DR, Engel JD, Stamatoyannopoulos G. Thalassaemia. Lancet 2012; 379: 373-83.

    Google Scholar 

  34. Knox-Macaulay HH, Weatherall DJ, Clegg JB, Bradley J, Brown MJ. The clinical and biosynthetic characterization of -thalassaemia. Br J Haematol 1972; 22: 497-512.

    Google Scholar 

  35. Nemeth E, Ganz T. Hepcidin and iron-loading anemias. Haematologica 2006; 91: 727-32.

    Google Scholar 

  36. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090-3.

    Google Scholar 

  37. Kautz L, Jung G, Du X, et al. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia. Blood 2015;126:2031–7

    Google Scholar 

  38. Nemeth E. Hepcidin in beta-thalassemia. Ann N Y Acad Sci 2010; 1202: 31-5.

    Google Scholar 

  39. Piomelli S, Karpatkin MH, Arzanian M, Zamani M, Becker MH, Geneiser N, et al. Hypertransfusion regimen in patients with Cooley's anemia. Ann N Y Acad Sci 1974; 232: 186-92.

    Google Scholar 

  40. Vogiatzi MG, Macklin EA, Fung EB, Cheung AM, Vichinsky E, Olivieri N, et al. Bone disease in thalassemia: a frequent and still unresolved problem. J Bone Miner Res 2009; 24: 543-57.

    Google Scholar 

  41. Toumba, Sergis A, Kanaris C, Skordis N. Endocrine complications in patients with Thalassaemia Major. Pediatr Endocrinol Rev. 2007 Dec;5(2):642-8.

    Google Scholar 

  42. Wood JC. Guidelines for quantifying iron overload. ASH Education Book 2014; 1:210-215.

    Google Scholar 

  43. Borgna-Pignatti C, Ruglotto S, De Stefano P et al. Survival and disease complications in thalassemia major. Ann NY Acad Sci. 1998; 850:227-231.

    Google Scholar 

  44. Ladis V, Chouliaras G, Berdousi H, Kanavakis E, Kattamis C. Longitudinal study of survival and causes of death in patients with thalassemia major in Greece. Ann N Y Acad Sci. 2005; 1054:445-450.

    Google Scholar 

  45. Kremastinos DT, Farmakis D, Aessopos A et al. β-Thalassemia Cardiomyopathy:History, Present Considerations, and Future Perspectives. Circ Heart Fail 2010; 3(3):451-458.

    Google Scholar 

  46. Danjou F, Francavilla M, Anni F, Satta S, Demartis FR, Perseu L, et al. A genetic score for the prediction of beta-thalassemia severity. Haematologica 2014.

    Google Scholar 

  47. Dixit A, Chatterjee TC, Mishra P et al. Hydroxyurea in thalassemia intermedia—a promising therapy. Ann Hematol 2005; 84(7):441-446.

    Google Scholar 

  48. Bradai M, Abad MT, Pissard S. Hydroxyurea can eliminate transfusion requirements in children with severe beta-thalassemia. Blood 2003; 102(4):1529-1530.

    Google Scholar 

  49. El-Beshlawy A, El-Ghamrawy M, EL-Ela MA et al. Response to hydroxycarbamide in pediatric β-thalassemia intermedia: 8 years' follow-up in Egypt. Ann Hematol 2014; 93(12):2045-2050.

    Google Scholar 

  50. Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014; 123: 615-24.

    Google Scholar 

  51. Harthoorn-Lasthuizen EJ, Lindemans J, Langenhuijsen MM. Influence of iron deficiency anaemia on haemoglobin A2 levels: possible consequences for beta-thalassaemia screening. Scand J Clin Lab Invest 1999; 59: 65-70.

    Google Scholar 

  52. Savitt TL, Goldberg MF. Herrick's 1910 case report of sickle cell anemia. The rest of the story. JAMA 1989; 261: 266-71.

    Google Scholar 

  53. Herrick JB. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch Intern Med 1910; 6: 517-21.

    Google Scholar 

  54. Gaston MH, Verter JI, Woods G, Pegelow C, Kelleher J, Presbury G, et al. Prophylaxis with oral penicillin in children with sickle cell anemia. A randomized trial. N Engl J Med 1986; 314: 1593-9.

    Google Scholar 

  55. Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med 1995; 332: 1317-22.

    Google Scholar 

  56. Adams R, McKie V, Nichols F, Carl E, Zhang DL, McKie K, et al. The use of transcranial ultrasonography to predict stroke in sickle cell disease. N Engl J Med 1992; 326: 605-10.

    Google Scholar 

  57. Adams RJ, McKie VC, Hsu L, Files B, Vichinsky E, Pegelow C, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 1998; 339: 5-11.

    Google Scholar 

  58. Wang WC, Ware RE, Miller ST, Iyer RV, Casella JF, Minniti CP, et al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet 2011; 377: 1663-72.

    Google Scholar 

  59. Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Dewi M, et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet 2013; 381: 142-51.

    Google Scholar 

  60. Nagel RL, Labie D. DNA haplotypes and the beta s globin gene. Prog Clin Biol Res 1989; 316B: 371-93.

    Google Scholar 

  61. Ware RE. Is sickle cell anemia a neglected tropical disease? PLoS Negl Trop Dis 2013; 7: e2120.

    Google Scholar 

  62. Steinberg MH. Predicting clinical severity in sickle cell anaemia. Br J Haematol 2005; 129: 465-81.

    Google Scholar 

  63. Powars DR. Sickle cell anemia: beta s-gene-cluster haplotypes as prognostic indicators of vital organ failure. Semin Hematol 1991; 28: 202-8.

    Google Scholar 

  64. Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Williams TN, et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat Commun 2010; 1: 104.

    Google Scholar 

  65. Williams TN, Mwangi TW, Wambua S, Alexander ND, Kortok M, Snow RW, et al. Sickle cell trait and the risk of Plasmodium falciparum malaria and other childhood diseases. J Infect Dis 2005; 192: 178-86.

    Google Scholar 

  66. Williams TN, Obaro SK. Sickle cell disease and malaria morbidity: a tale with two tails. Trends Parasitol 2011; 27: 315-20.

    Google Scholar 

  67. Brown AK, Sleeper LA, Miller ST et al. Reference values and hematologic changes from birth to 5 years in patients with sickle cell disease. Cooperative Study of Sickle Cell Disease. Arch Pediatr Adolesc Med. 1994; 148(8):796-804.

    Google Scholar 

  68. Voskaridou E, Christoulas D, Bilalis A et al. The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single-center trial (LaSHS). Blood 2010; 115(12):2354-2363.

    Google Scholar 

  69. Yawn BP, Buchanan GR, Afenyi-Annan AN. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members.. JAMA 2014; 312(10):1033-1048.

    Google Scholar 

  70. Quinn CT, Rogers ZR, McCavit TL, Buchanan GR. Improved survival of children and adolescents with sickle cell disease. Blood 2010; 115: 3447-52.

    Google Scholar 

  71. Telfer P, Coen P, Chakravorty S, Wilkey O, Evans J, Newell H, et al. Clinical outcomes in children with sickle cell disease living in England: a neonatal cohort in East London. Haematologica 2007; 92: 905-12.

    Google Scholar 

  72. Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S, Moohr JW, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood 1998; 91: 288-94.

    Google Scholar 

  73. DeBaun MR, Armstrong FD, McKinstry RC, Ware RE, Vichinsky E, Kirkham FJ. Silent cerebral infarcts: a review on a prevalent and progressive cause of neurologic injury in sickle cell anemia. Blood 2012; 119: 4587-96.

    Google Scholar 

  74. Miller ST, Macklin EA, Pegelow CH et al. Silent infarction as a risk factor for overt stroke in children with sickle cell anemia: a report from the Cooperative Study of Sickle Cell Disease. J Pediatr 2001; 139(3):385-390.

    Google Scholar 

  75. Pegelow CH, Macklin EA, Moser FG et al. Longitudinal changes in brain magnetic resonance imaging findings in children with sickle cell disease. Blood 2002; 99(8):3014-3018.

    Google Scholar 

  76. Debaun MR, Gordon M, McKinstry RC et al. Controlled trial of transfusions for silent cerebral infarcts in sickle cell anemia. NEJM 2014; 371(8):699-710.

    Google Scholar 

  77. Ware RE, Davis BR, Schultz WH, et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia - TCD With Transfusions Changing to Hydroxyurea (TWiTCH): amulticentre, open-label, phase 3, non-inferiority trial. Lancet 2016;387:661-70.

    Google Scholar 

  78. Caldas MC, Meira ZA, Barbosa MM. Evaluation of 107 patients with sickle cell anemia through tissue Doppler and myocardial performance index. J Am Soc Echocardiogr 2008; 21: 1163-7.

    Google Scholar 

  79. Fitzhugh CD, Lauder N, Jonassaint JC, Telen MJ, Zhao X, Wright EC, et al. Cardiopulmonary complications leading to premature deaths in adult patients with sickle cell disease. Am J Hematol 2010; 85: 36-40.

    Google Scholar 

  80. Connes P and Coates TD. Autonomic nervous system dysfunction: implication in sickle cell disease. C R Biol 2013; 336(3):142-147.

    Google Scholar 

  81. Niss O, Quinn CT, Lane A, et al. Cardiomyopathy with restrictive physiology in sickle cell disease. JACC Cardiovasc Imaging 2016;9:243-52

    Google Scholar 

  82. Anim SO, Strunk RC and Debaun MR. Asthma morbidity and treatment in children with sickle cell disease. Expert Rev Respir Med 2011; 5(5):635-645.

    Google Scholar 

  83. Boyd JH, Macklin EA, Strunk RC and Debaun MR. Asthma is associated with acute chest syndrome and pain in children with sickle cell anemia. Blood 2006; 108(9):2923-2927.

    Google Scholar 

  84. Vichinsky EP, Neumayr LD, Earles AN, Williams R, Lennette ET, Dean D, et al. Causes and outcomes of the acute chest syndrome in sickle cell disease. National Acute Chest Syndrome Study Group. N Engl J Med 2000; 342: 1855-65.

    Google Scholar 

  85. Klings ES, Machado RF, Barst RJ, Morris CR, Mubarak KK, Gordeuk VR, et al. An official American Thoracic Society clinical practice guideline: diagnosis, risk stratification, and management of pulmonary hypertension of sickle cell disease. Am J Respir Crit Care Med 2014; 189: 727-40.

    Google Scholar 

  86. Parent F, Bachir D, Inamo J et al. A Hemodynamic Study of Pulmonary Hypertension in Sickle Cell Disease. NEJM 2011; 365:44-53.

    Google Scholar 

  87. Ware RE, Rees RC, Sarnaik SA, et al; BABY HUG Investigators. Renalfunction in infants with sickle cell anemia: Baseline data from the BABY HUG trial. J Pediatr 2010;156:66–70.

    Google Scholar 

  88. Quinn CT, Saraf SL, Gordeuk VR, et al. Losartan for the nephropathy of sickle cell anemia: a phase-2, multi-center trial. Am J Hematol 2017;June 7

    Google Scholar 

  89. Marti-Carvajal AJ, Sola I, Agreda-Perez LH. Treatment for avascular necrosis of bone in people with sickle cell disease. Cochrane Database Syst Rev 2012; 5: CD004344.

    Google Scholar 

  90. Bonanomi MT, Lavezzo MM. Sickle cell retinopathy: diagnosis and treatment. Arq Bras Oftalmol 2013; 76: 320-7.

    Google Scholar 

  91. Platt OS, Rosenstock W, Espeland MA. Influence of sickle hemoglobinopathies on growth and development. N Engl J Med 1984; 311: 7-12.

    Google Scholar 

  92. Barden EM, Zemel BS, Kawchak DA, Goran MI, Ohene-Frempong K, Stallings VA. Total and resting energy expenditure in children with sickle cell disease. J Pediatr 2000; 136: 73-9.

    Google Scholar 

  93. Williams R, Olivi S, Li CS, Storm M, Cremer L, Mackert P, et al. Oral glutamine supplementation decreases resting energy expenditure in children and adolescents with sickle cell anemia. J Pediatr Hematol Oncol 2004; 26: 619-25.

    Google Scholar 

  94. Mantadakis E, Cavender JD, Rogers ZR, Ewalt DH, Buchanan GR. Prevalence of priapism in children and adolescents with sickle cell anemia. J Pediatr Hematol Oncol 1999; 21: 518-22.

    Google Scholar 

  95. Hassell KL, Eckman JR, Lane PA. Acute multiorgan failure syndrome: a potentially catastrophic complication of severe sickle cell pain episodes. Am J Med 1994; 96: 155-62.

    Google Scholar 

  96. Lee MT, Piomelli S, Granger S et al. Stroke Prevention Trial in Sickle Cell Anemia (STOP): extended follow-up and final results. Blood 2006;108(3):847-852.

    Google Scholar 

  97. Adams RJMckie VCHsu L et al Prevention of first stroke by transfusions in children with sickle sell anemia and abnormal results on transcranial ultrasonography. N Engl J Med.1998;339:5-11.

    Google Scholar 

  98. Chararche S, Terrin ML, Moore RD et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. NEJM 1995; 332(20):1317-1322.

    Google Scholar 

  99. Hankins JS, Helton KJ, McCarville MB et al. Preservation of spleen and brain function in children with sickle cell anemia treated with hydroxyurea. Pediatr Blood Cancer 2008; 50(2)293-297.

    Google Scholar 

  100. Steinberg MH, Barton F, Castro O et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA 2003; 289(13):1645-1651.

    Google Scholar 

  101. Lobo CLC, Pinto JFC, Nascimento et al. The effect of hydroxcarbamide therapy on survival of children with sickle cell disease. Br J Haematol 2013; 161(6):852-860.

    Google Scholar 

  102. Ware RE. How I use hydroxyurea to treat young patients with sickle cell anemia. Blood 2010; 115: 5300-11.

    Google Scholar 

  103. King A and Shenoy S. Evidence-based focused review of the status of hematopoietic stem cell transplantation as treatment of sickle cell disease and thalassemia. Blood 2014; 132(20):3089-3094.

    Google Scholar 

  104. Olivieri NF. The beta-thalassemias. N Engl J Med 1999; 341: 99-109.

    Google Scholar 

  105. Piel FB, Patil AP, Howes RE et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nature Communications 2010; 1(104):1-7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell E. Ware .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McGann, P.T., Nero, A.C., Ware, R.E. (2017). Clinical Features of β-Thalassemia and Sickle Cell Disease. In: Malik, P., Tisdale, J. (eds) Gene and Cell Therapies for Beta-Globinopathies. Advances in Experimental Medicine and Biology(), vol 1013. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7299-9_1

Download citation

Publish with us

Policies and ethics