Skip to main content

Cryoinjury Model for Tissue Injury and Repair in Bioengineered Human Striated Muscle

  • Protocol
  • First Online:
Skeletal Muscle Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1668))

Abstract

Regenerative medicine aims to replace injured tissues to restore normal physiological function. One possibility for achieving this goal is to activate or enhance endogenous regenerative pathways. Therefore, human tissue regeneration models may be useful tools for the discovery and development of novel regenerative therapeutics. In this chapter, we describe methods for the generation of three-dimensional bioengineered striated muscle in vitro and a cryoinjury model that can be applied to these tissues. This technique enables mechanistic in vitro analysis of the endogenous regenerative response of human striated muscle to injury, which is not possible using other in vivo approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee RT, Walsh K (2016) The future of cardiovascular regenerative medicine. Circulation 133(25):2618

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blau HM, Cosgrove BD, Ho ATV (2015) The central role of muscle stem cells in regenerative failure with aging. Nat Med 21(8):854–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tabebordbar M, Wang ET, Wagers AJ (2013) Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. Ann Rev Pathol 8(1):441–475

    Article  CAS  Google Scholar 

  4. Porrello ER et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Porrello ER et al (2013) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci 110(1):187–192

    Article  CAS  PubMed  Google Scholar 

  6. Ranga A, Gjorevski N, Lutolf MP (2014) Drug discovery through stem cell-based organoid models. Adv Drug Deliv Rev 69-70:19–28

    Article  CAS  PubMed  Google Scholar 

  7. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sato T et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265

    Article  CAS  PubMed  Google Scholar 

  9. Takebe T et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499(7459):481–484

    Article  CAS  PubMed  Google Scholar 

  10. Lancaster MA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

    Article  CAS  PubMed  Google Scholar 

  11. Takasato M et al (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16(1):118–126

    Article  CAS  PubMed  Google Scholar 

  12. Madden L et al (2015) Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. eLife 4:e04885

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tiburcy M et al (2017) Defined engineered human myocardium with advanced maturation for applications in heart failure modelling and repair. Circulation 135(19):1832–1847

    Google Scholar 

  14. Eder A et al (2016) Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev 96:214–224

    Article  CAS  PubMed  Google Scholar 

  15. Eschenhagen T et al (2012) Physiological aspects of cardiac tissue engineering. Am J Physiol Heart Circ Physiol 303(2):H133

    Article  CAS  PubMed  Google Scholar 

  16. Juhas M et al (2014) Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc Natl Acad Sci 111(15):5508–5513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng CS et al (2016) Cell density and joint microRNA-133a and microRNA-696 inhibition enhance differentiation and contractile function of engineered human skeletal muscle tissues. Tissue Eng A 22(7–8):573–583

    Article  CAS  Google Scholar 

  18. Stover AE, Schwartz PH (2011) Adaptation of human pluripotent stem cells to feeder-free conditions in chemically defined medium with enzymatic single-cell passaging. Methods Mol Biol 767:137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maintenance of human pluripotent stem cells in mTeSRâ„¢1 (2015). Stem Cell Technologies

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Hudson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mills, R.J., Voges, H.K., Porrello, E.R., Hudson, J.E. (2017). Cryoinjury Model for Tissue Injury and Repair in Bioengineered Human Striated Muscle. In: Ryall, J. (eds) Skeletal Muscle Development. Methods in Molecular Biology, vol 1668. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7283-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7283-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7282-1

  • Online ISBN: 978-1-4939-7283-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics