Skip to main content

Analysis of miRNA Signatures in Neurodegenerative Prion Disease

  • Protocol
  • First Online:
Prions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1658))

Abstract

Prion diseases or transmissible spongiform encephalopathies are disorders of the central nervous system that affect both humans and animals. The underlying cause of prion diseases is the formation and propagation of the infectious prion protein. Prion diseases are difficult to diagnose and treat due to a prolonged asymptomatic incubation period prior to the onset of clinical symptoms. MicroRNAs (miRNAs) are small noncoding RNA species and have been identified as potential biomarkers that also function to regulate disease-specific pathways and proteins in several neurodegenerative disorders, including prion diseases. Here we describe the quantitative analysis of miRNA isolated from neuronal cells infected with a strain of mouse-adapted human prions. These methods can also be adapted to the discovery of miRNA biomarkers in extracellular vesicles, tissue, and noninvasive biological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    Article  CAS  PubMed  Google Scholar 

  2. Aguzzi A, Heikenwalder M (2006) Pathogenesis of prion diseases: current status and future outlook. Nat Rev Microbiol 4:765–775

    Article  CAS  PubMed  Google Scholar 

  3. Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813

    Article  CAS  PubMed  Google Scholar 

  4. Atarashi R, Satoh K, Sano K et al (2011) Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med 17:175–178

    Article  CAS  PubMed  Google Scholar 

  5. Lacroux C, Comoy E, Moudjou M et al (2014) Preclinical detection of variant CJD and BSE prions in blood. PLoS Pathog 10:e1004202

    Article  PubMed  PubMed Central  Google Scholar 

  6. Edgeworth JA, Farmer M, Sicilia A et al (2011) Detection of prion infection in variant Creutzfeldt-Jakob disease: a blood-based assay. Lancet 377:487–493

    Article  CAS  PubMed  Google Scholar 

  7. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    Article  CAS  PubMed  Google Scholar 

  8. Dimmeler S, Nicotera P (2013) MicroRNAs in age-related diseases. EMBO Mol Med 5:180–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  10. Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7

    Article  CAS  PubMed  Google Scholar 

  11. Cao X, Yeo G, Muotri AR et al (2006) Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29:77–103

    Article  CAS  PubMed  Google Scholar 

  12. Sempere LF, Freemantle S, Pitha-Rowe I et al (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920

    Article  CAS  PubMed  Google Scholar 

  14. Schaefer A, O'carroll D, Tan CL et al (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawase-Koga Y, Otaegi G, Sun T (2009) Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn 238:2800–2812

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang T, Liu Y, Huang M et al (2010) Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J Mol Cell Biol 2:152–163

    Article  CAS  PubMed  Google Scholar 

  17. Bellingham SA, Guo BB, Coleman BM et al (2012) Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 3:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saba R, Goodman CD, Huzarewich RL et al (2008) A miRNA signature of prion induced neurodegeneration. PLoS One 3:e3652

    Article  PubMed  PubMed Central  Google Scholar 

  19. Montag J, Hitt R, Opitz L et al (2009) Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease. Mol Neurodegener 4:36

    Article  PubMed  PubMed Central  Google Scholar 

  20. Majer A, Medina SJ, Niu Y et al (2012) Early mechanisms of pathobiology are revealed by transcriptional temporal dynamics in hippocampal CA1 neurons of prion infected mice. PLoS Pathog 8:e1003002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cohen E, Avrahami D, Frid K et al (2013) Snord 3A: a molecular marker and modulator of prion disease progression. PLoS One 8:e54433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40:10937–10949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Applied biosystems (2013) Procedure for multiplexing the RT step with or without preamplification while using TaqMan MicroRNA Assays In: Applied Biosystems User Bulliten 4465407. http://www.appliedbiosystems.com

  25. Ibberson D, Benes V, Muckenthaler MU et al (2009) RNA degradation compromises the reliability of microRNA expression profiling. BMC Biotechnol 9:102

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wong L, Lee K, Russell I et al. (2007) Endogenous controls for real-time quantitation of miRNA using TaqMan® MicroRNA assays. In: Applied biosystems application note. http://www.appliedbiosystems.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew F. Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bellingham, S.A., Hill, A.F. (2017). Analysis of miRNA Signatures in Neurodegenerative Prion Disease. In: Lawson, V. (eds) Prions. Methods in Molecular Biology, vol 1658. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7244-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7244-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7242-5

  • Online ISBN: 978-1-4939-7244-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics